Subject: Maths

Curriculum Vision

- > Our core aim is to help students climb the tree of knowledge, so they can access university, higher education, employment or an apprenticeship.
- > Our curriculum is embedded in a knowledge rich approach, and we firmly believe that knowledge begets knowledge. As a result, we use a spiral, progressive curriculum where knowledge is re-visited and developed further throughout their time at The Duston School
- Through the enacted curriculum, there is an expectation that students retain what they have been taught in their long-term memory. To give students the best chance to retain knowledge, topics are gone into depth rather than extending to new material. The Key Stage 3 curriculum is progressed throughout the first 3 years of the secondary-phase and we have prevented the early appearance of most Key Stage 4 content as we believe this thins the students understanding and be a detriment to students' long-term memory and being able to reproduce content in assessments at a later date.
- In Key Stage 4, students access the Edexcel GCSE for both Mathematics and Statistics. We believe that by doing the GCSE Statistics students get to see the real-life application of mathematics and how information is used to make informed decisions to balance with the content abstract topics within the GCSE Mathematics. Both exams are taught within the students' mathematics curriculum lessons.

There is a strong emphasis on retrieval practice, sequencing and interleaving, with the curriculum seen as a progression model

Curriculum Intent

- > The Key Stage 3 curriculum is focused on strengthening the fundamentals of the core topics of mathematics and building students confidence with these.
- > Students see content through different questioning strands to builds students understanding of the knowledge and the applications and variations that it can support.
 - > The task of Key Stage 3 is to develop in students to 'know what to do, when you don't know what to do' through developing their problem-solving.
- In Key Stage 4, we set our students based on their prior-knowledge to support students to make the most progress from their starting points and support students to succeed within their lessons with the use of modelling and exam examples filtered through the lessons.

Developing mathematical oracy is important for developing confident mathematicians and therefore knowledge retrieval questions and content is repeated throughout Knowledge Organisers and homework

Curriculum Offer: KS3

	Year 7	Year 8	Year 9
	Topic 1: Calculations and Accuracy	Topic 1: Calculations and Accuracy	Topic 1: Calculations and Accuracy
Term 1 & 2	 Using place value Negatives numbers decimals multiplying decimals introduction to sequences Topic 2: Integers, Powers and Roots: 	 Ordering Numbers (inc decimal and negatives) Recurring decimals Median Range Dividing decimals Rounding to decimal places 	 Rounding to significant figures Inequalities on a number line Upper and lower bounds Error intervals Topic 2: Integers, Powers and Roots

- multiplication (inc. negatives)
- Squares and cube
- Division (inc. negatives)
- Fact families
- Factors and multiples
- HCF and LCM

Topic 3: Measures

- Converting metric length
- Converting metric mass
- Converting metric volume
- Converting and using time

Topic 4 (Part 1): Fractions, Decimals, Percentages

- Representing Fractions
- Simplifying and Equivalent Fractions

Topic 2: Integers, Powers and Roots

- Estimating square roots
- Basic laws of indices
- Converting standard form
- Adding and subtracting in standard form

Topic 3: Simplifying and Substitution

- Using function machines
- Expanding single brackets
- Expanding double brackets
- Factorising single brackets

- Laws of indices (fractional and negative)
- Operations with standard form numbers
- Introduction to surds
- Simplifying surds

Topic 3: Ratio and Proportion

- Re-cap ratio content from year 7
- Converting between fraction and ratio quantities
- Sharing problems
- Exchange Rates
- Direct Proportion
- Introduction to Inverse Proportion

	Fractions of amountsOperations withFractions		
Term 3 & 4	Topic 4 (Part 2): Fractions, Decimal, Percentages Representing percentages Percentage of amounts Increase and Decrease by a percentage Converting between Fractions, Decimals and Percentages Topic 5: Ratio and Proportion Introduction to ratio Simplifying and Equivalent ratio Sharing ratio problems Recipe problems Best buy problems Direct Proportion	Topic 4: Fractions, Decimals, Percentages	Topic 4: Fractions, Decimals, Percentages Fractions re-cap Percentage Increase and Decrease Simple Interest Compound Interest Reverse percentages Percentage change Topic 5: Simplifying and Substitution Simplifying algebraic terms Expanding Brackets Factorising single and double brackets Linking algebra to shape topics Topic 6: Constructions

Topic 6: Simplifying and Substitution:

- Introducing Algebra
- Simplifying terms
- Collecting like terms
- Forming expressions
- Substitution

Topic 7: Area and Perimeter:

- Working out Perimeter Problems
- Formulas for calculating Area of Basic 2D Shapes
- Reverse area problems
- Working out the area of compound 2D Shapes

 Re-arranging simple equations

Topic 6: Area, Perimeter and Volume

- Area and Perimeter recap
- Circumference of a Circle
- Area of a circle
- Nets of shapes
- Surface Area of prisms
- Volume of a Prism

Topic 7: Sequences, Functions and Graphs

- Finding the rule of a sequence
- Understanding arithmetic sequences
- Understanding geometric sequences
- Understanding Fibonacci sequence
- Finding nth term of a linear sequence

- Perpendicular bisectors
- Angle bisectors
- Perpendicular bisectors from a point
- Constructing 30°, 45° 60°, 90° angles
- Drawing Elevations

Topic 7: Forming and Solving

- Solving linear equations problems
- Solving equations with unknown on both sides
- Re-arranging equations
- Solving linear simultaneous equations

		 Finding the midpoint of two co-ordinates Drawing vertical and horizontal lines Plotting linear graphs Identifying the equations of a linear line 	
Term 5 & 6	Topic 8: Lines, Angles and Shape Drawing and accurately measuring angles Using a compass Using angle rules for types of triangles Using angle rules for types of quadrilaterals Learning formula for the sum of interior angles of a polygon Topic 9: Representing Data Pictograms Bar Charts	 Cumulative 	 Topic 8: Sequences, Functions and Graphs Drawing linear graphs Identifying linear graphs Solving simultaneous equations graphically Using rules for parallel and perpendicular lines Plotting quadratics Solving equations using a graph Topic 9: Shape

- Vertical line bars
- Pie charts
- Two-Way Tables
- Calculating Mean
- Calculating Mode
- Stem and Leaf

Topic 10: Probability

- Probability Scale
- Calculating Probability as fractions
- Sample Space Diagrams
- Using Sets
- Venn Diagrams

- missing sides of a triangle
- Using Pythagoras' Theorem to solve problems involving right-angled triangles

Topic 10: Transformations

- Understanding vectors
- Translations
- Rotations
- Reflections
- Enlargements
- Describing transformations

- Converting metric area and volume units
- Calculating volume problems
- Calculating Surface Area problems
- Applying Pythagoras' Theorem
- <u>Introducing</u>
 <u>Trigonometry</u>
- <u>Using trigonometry to</u> <u>work out an angle</u>
- <u>Using trigonometry to</u> <u>work out a length</u>

Topic 10: Probability

- Relative frequency
- Expected frequency
- Introducing probability trees
- Introducing conditional probability

	•	Set	Notation	with
		Venr	n Diagrams	

Curriculum Offer: KS4 for students for those accessing the Edexcel Higher Curriculum

	Year 10	Year 11
	Topic 1: Integers, Powers and Roots	Topic 1: Probability
	 HCF and LCM Index Laws Surds Topic 2: Lines, Angles and Shape	 Probability Basics Relative and Expected frequencies Tree Diagrams 'And' and 'Or' rule Conditional Probability Probability with algebra
Term 1	 Angles Facts Angles in parallel Lines Angles in polygons Circle Theorems 	GCSE Statistics Unit 5: Time Series • Drawing Time Series Graphs
	Topic 3: Simplifying and Substitution	Interpreting Time Series graphsTrend LinesMoving Averages
	Simplifying algebraExpanding BracketsFactorising Brackets	Seasonal VariationPredicting outcomes

	Algebraic FractionsFunctions	Topic 2: Number and Algebra Revisiting and revising the Number and Algebra content from the exam specification with a focus on exam technique and supporting students at their appropriate levels.
Term 2	 Topic 4: Area and Perimeter Area and Perimeter Problems Arc Length Area of a sector Solving Problems Topic 5: Calculations and Accuracy Estimating calculations Rounding and Truncating Bounds 	Topic 3: Shape and Geometry Revisiting and revising the Shape and Geometry content from the exam specification with a focus on exam technique and supporting students at their appropriate levels. GCSE Statistics Unit 6: Probability
	Topic 6: Fractions, Decimals and Percentage	 Absolute and Relative Risk Venn Diagrams Set Notation (inc. Given that) Conditional Probability

Term 3	
1611113	

Topic 7: Ratio and Proportion

- Ratio problems
- Similar Shapes and Congruency
- Area and Volume Scale Factors
- Direct Proportion
- Inverse Proportion

GCSE Statistics Unit 2: Analysing Data

- Calculating Averages and range
- Finding Geometric Mean
- Finding weighted mean
- Using Interpolation to find the median
- Finding Quartiles and Percentiles of data
- Creating a Box Plot
- Finding standard deviation
- Understand Skew
- Identify outliers in data
- Compare data
- Transforming Data values

Mock Exams

Lessons will focus on revision in preparation for and during the Mock Exam season. Weeks post the mock season will focus on the key areas of each class ensuring that misconceptions and key content is addressed and given appropriate time to fix.

GCSE Statistics Unit 7: Index Numbers

- Simple Index Numbers
- Calculations involving index numbers
- Using Index Numbers (RPI, CPI, GDP)
- Weighted Index Numbers
- Chain base Index Numbers
- Rates of change

	Topic 8: Sequences, Functions and Graphs	
	 Using nth term of linear sequences to solve problems Quadratic Sequences Equations of parallel and perpendicular lines Key points on a graph Reciprocal and Exponential graphs Transforming Graphs 	Topic 4: Data, Ratio and Proportion Revisiting and revising the Shape and Geometry content from the exam specification with a focus on exam technique and supporting students at their
	GCSE Statistics Unit 3: Representing Data	appropriate levels.
Term 4	 Terminology of Data Comparative and Composite Bar Charts Back-to-back stem and leaf diagrams Cumulative frequency graphs Population pyramids Choropleth Maps Frequency Polygons Histograms Interpreting data from a graph Understanding misleading graphs 	GCSE Statistics Unit 8: Distributions Binomial Distribution Normal Distribution Standardised Scores Quality Assurance

Topic 9: Forming and Solving Equations

- Solving linear equations
- Solving inequalities
- Solving quadratic equations through factorising
- Solving quadratic equations graphically
- Using the quadratic formula
- Solving simultaneously a quadratic and linear equation
- Using Iterations to estimate a solution

Term 5

Topic 10: Pythagoras and Trigonometry

- Re-cap
- Using Pythagoras' Theorem in 3D
- Re-cap Trigonometry
- Sine Rule
- Cosine Rule
- Exact Trig values
- Area of a triangle
- Drawing trigonometric functions

GCSE Statistics Unit 4: Scatter Graphs and Spearman Rank

Final Stages

During this term, classes will focus on key areas identified through past assessments and exam revision. The lessons will be focused on exposing students to exam material such that they become familiar with exam content.

	 Drawing and reading data off of a Scatter Graph Describing correlations Describing relationships Line of Best fit Equation of a line of best fit Interpreting a line of best fit Interpolating data and extrapolating data Understanding spearman's rank Calculating spearman's rank correlation co-efficient Understanding product moment correlation co-efficient 	
Term 6	 Topic 11: Volume and Surface Area Surface Area of shapes (inc. cylinders and sphere) 	

 Volume of shapes (inc. cylinders and spheres) Finding Surface Area and Volume of cones and frustums 	
End of Year Exam feedback and addressing misconceptions.	

Curriculum Offer: A-level Mathematics

	Year 12	Year 13
	□ Algebra and Functions	Algebraic Methods
	 Manipulating algebraic expressions 	 Proof by contradiction
AS – Paper 1	 Solving quadratic equations 	 Algebraic fractions and division
A-level – Paper 1 and 2	 Understanding functions and their graphs 	 Partial fractions with repeated factors
	 Transformations of functions 	 Functions and Graphs
	Coordinate Geometry	 Modulus functions

- Equations of straight lines
- Midpoints and distances
- o Geometric proofs using algebra

Trigonometry

- Trigonometric ratios and identities
- Solving trigonometric equations
- Graphs of sine, cosine, and tangent functions

Sequences and Series

- Arithmetic and geometric sequences
- Summation notation
- Formulae for nth term and sum of series

• Exponentials and Logarithms

- Laws of indices
- Natural logarithms and exponential functions
- Solving exponential and logarithmic equations

Differentiation

Derivatives from first principles

- Composite and inverse functions
- Transformations of graphs

• Trigonometry and Radians

- Radian measure
- Arc length and area of sectors
- Trigonometric identities and equations
- Small angle approximations

• Trigonometric Functions

- Secant, cosecant, and cotangent functions
- Graphs and properties
- Solving equations involving these functions

• Parametric Equations

- Sketching parametric curves
- Converting between parametric and Cartesian forms
- Differentiation of parametric equations

Differentiation

- Rules of differentiation
- Tangents, normals, and stationary points
- Applications to curve sketching and optimization

Integration

- o Indefinite and definite integrals
- Integration as the reverse of differentiation
- Area under curves

Graphs and Transformations

- Sketching graphs of functions
- Applying transformations (translations, reflections, stretches)

Proof

- Mathematical proof techniques including deduction and contradiction
- Proof by exhaustion and counterexample

- Chain rule, product rule, quotient rule
- Implicit differentiation
- Differentiation of exponential, logarithmic, and trigonometric functions
- Second derivatives and rates of change

Integration

- Integration by substitution and by parts
- Use of partial fractions in integration
- Definite integrals and area under curves
- Solving differential equations

Numerical Methods

- Iterative methods for solving equations
- Newton-Raphson method
- Numerical integration (trapezium rule)

Vectors

		 3D vector geometry Vector equations of lines Scalar product and applications
	<u>Statistics Topics</u>	Statistics Topics
	Data Collection	Regression and Correlation
	 Populations and samples 	 Linear regression models
	 Sampling methods (random and non-random) 	 Interpretation of correlation coefficients
	 Types of data (qualitative, 	 Use of regression lines for prediction
	quantitative, discrete, continuous)	 Conditional Probability
AS – Paper 2	 Use of the large data set 	 Tree diagrams and Venn diagrams
A-level –	 Measures of Location and Spread 	 Independent and dependent events
Paper 3	。 Mean, median, mode	 Calculating probabilities using
	 Range, interquartile range, variance, 	conditional relationships
	standard deviation	The Normal Distribution
	 Coding techniques 	 Properties of the normal curve
	Representing Data	 Standard deviation and mean
	Box plots	 Using the standard normal
	 Cumulative frequency diagrams 	distribution (Z-scores)
<u> </u>	Histograms	

Identifying outliers

• Correlation and Regression

- Scatter diagrams
- Linear regression
- Product moment correlation coefficient

Probability

- Mutually exclusive and independent events
- Venn diagrams and tree diagrams

Statistical Distributions

- Discrete probability distributions
- Binomial distribution
- Cumulative probabilities

Mechanics Topics

- Kinematics
 - o Motion in a straight line
 - Displacement, velocity, acceleration
 - Using equations of motion (SUVAT)
- Forces and Newton's Laws

 Approximating binomial distributions with normal models

Hypothesis Testing

- Formulating null and alternative hypotheses
- One-tailed and two-tailed tests
- Critical regions and significance levels
- Hypothesis testing using the binomial and normal distributions

Mechanics Topics

Moments

- Calculating moments about a point
- Conditions for equilibrium
- Applications to beams and rigid bodies

• Forces and Friction

- Resolving forces on inclined planes
- Static and dynamic friction
- Limiting equilibrium

• Projectiles

Horizontal and vertical motion

- Types of forces (weight, normal reaction, tension, friction)
- Newton's laws of motion
- Equilibrium and resolving forces
- Connected Particles and Dynamics
- Pulley systems
- Motion of connected particles
- Variable acceleration

- Equations of motion in two dimensions
- Maximum height, range, and time of flight

• Applications of Forces

- Connected particles (e.g., pulley systems)
- Variable acceleration
- Newton's laws in complex systems

Further Kinematics

- Using calculus in motion problems
- Velocity and acceleration as derivatives
- Displacement from integration

Curriculum Offer: A-level Further Mathematics

	Year 12	Year 13
Core	Complex Numbers	Complex Numbers
	 Basic operations (addition, subtraction, multiplication, division) 	De Moivre's TheoremRoots of complex numbers

- Solving quadratic equations with complex roots
- Argand diagrams
- Modulus and argument
- Geometric interpretation of complex numbers

Roots of Polynomials

- Fundamental Theorem of Algebra
- Factor theorem and polynomial division
- Complex roots and conjugate pairs
- Solving cubic and quartic equations

Matrices

- Matrix operations (addition, multiplication)
- Determinants of 2×2 and 3×3 matrices
- Inverse matrices
- Solving systems of linear equations using matrices

- Loci in the complex plane
- Applications to trigonometric identities

Matrices and Linear Transformations

- Matrix multiplication and inverse matrices
- Determinants and their properties
- Solving systems of equations using matrices
- Linear transformations and eigenvalues/eigenvectors

III Series and Maclaurin Expansions

- Summation of series
- Use of sigma notation
- Maclaurin series for standard functions
- Approximations using series expansions

Calculus and Applications

Further integration techniques

Series

- Arithmetic and geometric series
- Use of sigma notation
- Recurrence relations
- Proof and manipulation of series

Proof by Induction

- Structure and logic of inductive proofs
- Applications to divisibility, summation, and recurrence relations

Vectors

- 3D vector geometry
- Vector equations of lines
- Scalar product and applications

♦ Volumes of Revolution

- Using integration to find volumes
- Rotating curves around the xor y-axis

- Volumes of revolution
- Differential equations (first and second order)
- Modelling with differential equations

Polar Coordinates

- Converting between Cartesian and polar forms
- Sketching polar graphs
- Area enclosed by polar curves

▲ Hyperbolic Functions

- Definitions of sinh, cosh, tanh
- Identities and graphs
- Inverse hyperbolic functions
- Differentiation and integration of hyperbolic functions

Wectors in 3D

- Vector equations of lines and planes
- Scalar and vector products
- Applications to geometry and mechanics

Further Stats	☐ Discrete Random Variables (DRVs)	□ Discrete Probability Distributions
	 Definition and properties of DRVs 	 Geometric distribution: models the number of
	 Probability distributions 	trials until the first success
	 Calculating expected value E(X) and variance /{Var}(X) 	 Negative binomial distribution: generalization of
	 Linear transformations of DRVs 	geometric for multiple successes
	Poisson Distribution	 Poisson distribution: models rare events over
	 Characteristics and 	time or space
	assumptions	 Central Limit Theorem
	 Calculating probabilities using the Poisson formula 	 Understanding sampling distributions
	 Mean and variance of the distribution 	 Approximating distributions of sample
	 Approximating binomial 	means
	distributions with Poisson	 Application to hypothesis
	Geometric and Negative Pineral Distributions	testing
	Binomial Distributions	Hypothesis Testing
		 Tests using Poisson and binomial distributions

- Geometric distribution: modelling number of trials until first success
- Negative binomial: generalization for multiple successes
- Mean and variance calculations

• Hypothesis Testing

- Formulating null and alternative hypotheses
- One-tailed and twotailed tests
- Critical regions and significance levels
- Hypothesis tests using Poisson and geometric distributions

• Central Limit Theorem (CLT)

- Understanding sampling distributions
- Using CLT to approximate distributions of sample means

- Critical regions and significance levels
- One-tailed and twotailed tests

• Chi-Squared Tests

- Goodness-of-fit tests
- Contingency tables
- Degrees of freedom and expected frequencies

Probability Generating Functions

- Definition and use in deriving moments
- Applications to discrete distributions

Quality of Tests

- Type I and Type II errors
- Power of a test
- Balancing significance and reliability

	Applications in hypothesis testing	
Decision	□ Algorithms	☐ Algorithms and Graph Theory
	 Definition and structure of algorithms Flow charts and pseudo- 	 Definitions and classifications of graphs (simple, weighted,
	code o Efficiency and order of algorithms	directed, bipartite)Adjacency matrices and list representations
	Graph Theory Terminology: vertices, edges, paths, cycles	 Graph traversal algorithms (e.g., depth- first and breadth-first search)
	 Types of graphs: simple, weighted, directed 	Minimum Spanning Trees Prim's Algorithm
	l o Adiacency matrices and I	Prim's AlgorithmKruskal's Algorithm
	Graph Algorithms	 Applications in network design
	Dijkstra's Algorithm: shortest path	Shortest Path Algorithms
	 Prim's and Kruskal's Algorithms: minimum spanning tree 	Dijkstra's AlgorithmFloyd's Algorithm (for all-pairs shortest paths)

- Chinese Postman
 Problem: shortest route
 covering all edges
- Travelling Salesperson Problem: shortest route visiting all vertices

Route Inspection and Network Flows

- Eulerian and semi-Eulerian graphs
- Flow capacity and conservation
- Maximum flow-minimum cut theorem

• Linear Programming

- Formulating linear inequalities
- Graphical solution of linear programs
- Objective functions and feasible regions

• Critical Path Analysis

Activity networks

• Route Inspection

- Eulerian and semi-Eulerian graphs
- Chinese PostmanProblem
- Finding optimal routes that cover all edges

Travelling Salesperson Problem (TSP)

- Heuristic methods for solving TSP
- Nearest neighbour and minimum spanning tree approaches

Matchings and Allocation

- Bipartite graphs
- Hungarian Algorithm for optimal assignments

• Linear Programming

- Formulating linear programs
- o Graphical solutions

0	Forward and backward
	passes

- Float times and project scheduling
- Matchings
- Bipartite graphs
- Use of the Hungarian Algorithm for optimal assignments

 Simplex method (introduction and applications)

• Critical Path Analysis

- Activity networks
- Forward and backward passes
- Float times and project scheduling
- Flows in Networks
- Maximum flow-minimum cut theorem
- Flow augmentation and bottlenecks

Careers

Mathematics is more than just numbers and equations—it's a powerful toolkit for solving real-world problems, developing logical thinking, and making informed decisions. Whether you're aiming for a career in engineering, finance, medicine, architecture, data science, or even game design, a strong foundation in maths opens doors to countless opportunities.

Employers across industries value the analytical and problem-solving skills that maths cultivates. From budgeting and coding to interpreting data and designing systems, the ability to think mathematically is a superpower in today's technique world.

In short, studying Secondary Maths isn't just about passing exams—it's about building a future where you can think critically, adapt quickly, and thrive in any career path you choose.

