BTEC Sport Year 11

Remote Learning Plan

Lesson 1

Create a poster with each of the effects below described (for a pass) or explained (for a merit) the short-term response of the body to exercise:

1. Increases production of synovial fluid
2. Increases range of joint mobility
3. Micro tears in muscle fibres
4. Encourages formation of new bone
5. Increased metabolic activity

Content:

A paragraph which describes/explains in your own words. Pictures/diagrams to support your description/explanation.

Lesson 2

Create a poster with each of the effects below described (for a pass) or explained (for a merit) the short-term response of the body to exercise:
1.Increased Heart rate and blood
2. Increased breathing rate
3.Sweat production and skin reddening
4.Redistribution of blood flow
5. Lactic acid in the blood
6.Cardiac output
7.Blood pressure
8.Increased tidal volume

Content:
A paragraph which describes/explains in your own words. Pictures/diagrams to support your description/explanation.

Lesson 3	Lesson 4
Finish your poster with each of the effects below described (for a pass) or explained (for a merit) the short-term response of the body to exercise:	Create a poster with each of the effects below described (for a pass) or explained (for a merit) the long-term adaptations of the body to exercise:
1.Increased Heart rate and blood 2.Increased breathing rate 3.Sweat production and skin reddening 1.Increase in bone density (bone strength) due to increase in calcium production 4.Redistribution of blood flow 2.Decreased risk of osteoporosis 5.Lactic acid in the blood 3.Stronger connective tissues (ligaments and tendons), so more resistant to injury 6.Cardiac output 4.Increased thickness of hyaline cartilage 7.Blood pressure 5.Increased stability of joints 8.Increased tidal volume 6.Hypertrophy (increased muscle size) 7.Skeletal muscles adapt to using more oxygen, the muscles and their capillaries become more efficient and can therefore work for a longer period of time	
A paragraph which describes/explains in your own words.	8.Increased number of mitochondria
9ictures/diagrams to support your description/explanation.	9.Improved posture.
	Content:
A paragraph which describes/explains in your own words.	
Pictures/diagrams to support your description/explanation.	

Lesson 5	Lesson 6
Finish your poster with each of the effects below described (for a pass) or explained (for a merit) the long-term adaptations of the body to exercise: 1. Increase in bone density (bone strength) due to increase in calcium production 2.Decreased risk of osteoporosis 3.Stronger connective tissues (ligaments and tendons), so more resistant to injury 4. Increased thickness of hyaline cartilage 5. Increased stability of joints 6. Hypertrophy (increased muscle size) 7.Skeletal muscles adapt to using more oxygen, the muscles and their capillaries become more efficient and can therefore work for a longer period of time 8. Increased number of mitochondria 9.Improved posture. Content: A paragraph which describes/explains in your own words. Pictures/diagrams to support your description/explanation.	Create a poster with each of the effects below described (for a pass) or explained (for a merit) the long-term adaptations of the body to exercise: 1.decrease in resting heart rate 2. increase in heart size and strength (increase in stroke volume and the heart can pump more blood per beat) 3. decreased risk of hypertension (high blood pressure) 4. increased Vital Capacity (VC) 5. increased maximum oxygen uptake (VO2 max). 6 . increased efficiency to deliver oxygen and remove waste products and gaseous exchange Content: A paragraph which describes/explains in your own words. Pictures/diagrams to support your description/explanation.

Lesson 7	Lesson 8
Create a poster with each of the effects below described (for a pass) or explained (for a merit) the long-term adaptations of the body to exercise: 1.decrease in resting heart rate 2. increase in heart size and strength (increase in stroke volume and the heart can pump more blood per beat) 3. decreased risk of hypertension (high blood pressure) 4. increased Vital Capacity (VC) 5. increased maximum oxygen uptake (VO2 max). 6. increased efficiency to deliver oxygen and remove waste products and gaseous exchange Content: A paragraph which describes/explains in your own words. Pictures/diagrams to support your description/explanation.	Using three different sports activities, compare and contrast how the musculoskeletal and cardiorespiratory systems respond and adapt to exercise. You need to write up 3 responses or adaptations from each poster, comparing and contrasting 3 different sports examples for each one. For example: - Synovial fluid is a short-term response your body makes when it experiences exercise. The body increases the production of synovial fluid for the joint to be lubricated and nourished. This helps to prevent wear and tear during exercise to the tendons, ligaments and bones. For example, when a runner is running the 1500 m synovial fluid is produced to prevent the bones from rubbing and grazing together. If there was no synovial fluid between the joints then the bone would start to wear away and may cause arthritis, which will mean that the runner will not be able to run anymore as it cannot be undone. Another sporting example is football. In football there is 90 mins worth of running, walking, jumping and changing of directions. Synovial fluid is used to keep the joints from rubbing together while the player is running in the knee joints. Also, when the player is twisting, turning while dribbling with the ball the hip joint is being used which synovial fluid is there to protect the ball and socket joint from rubbing on other bones to prevent injury, therefore compared to the 1500 m runner synovial fluid is really important. The last sporting example is road cycling. Road cycling spend hours upon end cycling which puts a lot of pressure on the knee joints. This could lead to the bones to rub and cause damage. But synovial fluid is produced to prevent and protect the joints in the knees and other joints that are being used. However as cycling is non weight bearing the impact on the knee joint wouldn't be as great as the runner or the footballer.

Lesson 9	Lesson 10
Using three different sports activities, compare and contrast how the musculoskeletal and cardiorespiratory systems respond and adapt to exercise. You need to write up 3 responses or adaptations from each poster, comparing and contrasting 3 different sports examples for each one. For example: - Synovial fluid is a short-term response your body makes when it experiences exercise. The body increases the production of synovial fluid for the joint to be lubricated and nourished. This helps to prevent wear and tear during exercise to the tendons, ligaments and bones. For example, when a runner is running the 1500 m synovial fluid is produced to prevent the bones from rubbing and grazing together. If there was no synovial fluid between the joints then the bone would start to wear away and may cause arthritis, which will mean that the runner will not be able to run anymore as it cannot be undone. Another sporting example is football. In football there is 90 mins worth of running, walking, jumping and changing of directions. Synovial fluid is used to keep the joints from rubbing together while the player is running in the knee joints. Also, when the player is twisting, turning while dribbling with the ball the hip joint is being used which synovial fluid is there to protect the ball and socket joint from rubbing on other bones to prevent injury, therefore compared to the 1500 m runner synovial fluid is really important. The last sporting example is road cycling. Road cycling spend hours upon end cycling which puts a lot of pressure on the knee joints. This could lead to the bones to rub and cause damage. But synovial fluid is produced to prevent and protect the joints in the knees and other joints that are being used. However as cycling is non weight bearing the impact on the knee joint wouldn't be as great as the runner or the footballer.	Task 1 - Create a poster describing the 3 energy systems and how stating how each of them provide energy for one sports performer. - The ATP CP/Alactic acid energy system - The Glycolysis/Lactic Acid System: - The Aerobic System: Task 2 - Using two selected sports, explain how the body uses both the anaerobic and aerobic energy systems. You should explain how each of the sports one, both or all of the energy systems depending on the activity chosen.

Lesson 11

Lesson 12

Task 1 -
Create a poster describing the 3 energy systems and how stating how each of them provide energy for one sports performer.

- The ATP CP/Alactic acid energy system
- The Glycolysis/Lactic Acid System:
- The Aerobic System:

Task 2 -

Using two selected sports, explain how the body uses both the anaerobic and aerobic energy systems.

You should explain how each of the sports one, both or all of the energy systems depending on the activity chosen.

Compare and contrast how the energy systems are used in sports with different demands.

You need to choose at least 3 different sporting examples which each have different demands e.g.

	Long Jump	800 m	Triathlon	Rugby
ATP/CP	X			
Glycolysis		X		
Aerobic			X	X

You then need to compare and contrast which energy systems are used by each sport/event.

Lesson 13

Lesson 14

Compare and contrast how the energy systems are used in sports with different demands.

During this lesson it will expected that all previous 13 lessons work is

You need to choose at least 3 different sporting examples which each have different demands e.g.

	Long Jump	800 m	Triathlon	Rugby
ATP/CP	X			
Glycolysis		X		X
Aerobic			X	X

You then need to compare and contrast which energy systems are used by each sport/event.

W/C $9^{\text {th }} \mathrm{Nov}$

Lesson 17

Lesson 18

In the booklet you need to complete task 4 and 5.

Task 5 Questions to consider in your answer.

What is the definition of aerobic endurance?
What makes up the cardiorespiratory system?
What does the Cardiac system do?
What does the Respiratory system do?
How do they systems work together to allow someone to exercise?

M/C23rd Nov	Lesson 21	Unit 3 Booklet Page 3 Goals
	Lesson 22	Unit 3 Booklet Training Method

Lesson 21	Lesson 22
Goals Specific - Links to you area of fitness and your sport Achievable - Can it be done by you? Realistic - Is it possible? Time bound - When is the end point? Exciting - is your training fun? Recorded - Is it written down? short-term goals (set over a short period of time, between one day and one month) medium-term goals (should give progressive support towards achievement of long-term goals) long-term goals (what they want to achieve in the long term, and the best way of doing this).	On the training method page in the booklet 1) What training method are you using? Continuous if aerobic endurance or Circuit if muscular endurance 2) Describe the training method? E.g. Continuous training is. \qquad /Circuit training is. \qquad 3) What do you intend to do? What activities did you include in your plan running/biking/circuit activities. Name a couple of the stations you have chosen and say why you have picked these. 4) Advantages/Disadvantages of it? Name 2 Advantages and 2 Disadvantages for the method. 5) Map of course/plan of circuit (which exercises) What is your starting route/what is your starting circuit? How long are you going run for?/How long is each station e.g 60 seconds, How long are you going to work/rest?

W/C30th Nov \quad Lesson 23 Unit 3 Booklet Training Method

Lesson 23	Lesson 24
On the training method page in the booklet 1) What training method are you using? Continuous if aerobic endurance or Circuit if muscular endurance 2) Describe the training method? E.g. Continuous training is......./Circuit training is....... 3) What do you intend to do? What activities did you include in your plan running/biking/circuit activities. Name a couple of the stations you have chosen and say why you have picked these. 4) Advantages/Disadvantages of it? Name 2 Advantages and 2 Disadvantages for the method. 5) Map of course/plan of circuit (which exercises) What is your starting route/what is your starting circuit? How long are you going run for?/How long is each station e.g 60 seconds, How long are you going to work/rest?	Warm Up Why do you need to do one? Explain - light, continuous physical activity to prepare the body for exercise Design a warm up Pulse Raiser Stretches Joint Mobilisation Cool Down Why do you need to do one? Explain - light, continuous physical activity to reduce heart rate, remove lactic acid and prevent blood pooling Design a cool down Pulse Lowering Developmental Stretches

Lesson 27

How have you applied FITT

Frequency - How often are you training? Why do you need to increase? Why do you have rest days?
Intensity - How hard are you planning to train?
target zones and training thresholds (calculating and applying maximum heart
rate
(HR max) to training):
o HR max $=220$ - age (years)
o 60-85\% HR max is the recommended training zone for cardiovascular and fitness
o Borg Rating of Perceived Exertion (RPE) Scale (1970) (6-20) can be measure of exercise intensity
o the relationship between RPE and heart rate where RPE $\times 10=\mathrm{HR}$
(bpm).
Time - How long are you training for? How does this change over the 6 weeks?
Type - What time of training are you using? Why? Are you changing it at all? Why?

What are and how are you applying of the additional principles of training.
Specificity - How does it link to your sport?
Progressive Overload - How are going to make your training harder?
Individual Needs - How does it link to your level of fitness?
Rest and Recovery - How will you ensure you have time to rest and recovery?
Why do you need to?
Reversibility - How will you ensure this doesn't happen?
Adaptation - What are you trying to achieve?
Variation - How will you use this?

Lesson 28

Training Plan

You need to design your training plan, considering what you have just mentioned about FITT. Your training plan should show progressive overload.
What variation have you got in your programme?

Aerobic Endurance							
Training Methods Muscular Endurance							
Week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
1	$\begin{aligned} & \text { Rest } \\ & \text { Rost } \end{aligned}$	Jog - 20 mins Crcuilt $\times 1 \mathrm{lop}$	Footbal troining-1 hour Netbal traininghour	$\begin{aligned} & \text { Jog- } 20 \mathrm{mins} \\ & \text { Crcult } \times 1 \mathrm{lop} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{array}{\|l} \text { Rest } \\ \text { Rest } \end{array}$	Football Match- 80 mins Nefb bodill Match- 50 mins
2		$\begin{aligned} & \text { Jog- } 22 \mathrm{mins} \\ & \text { Crcuil } \times 1 \mathrm{lop} \end{aligned}$	$\begin{aligned} & \text { Footbal training-1 } \\ & \text { nour } \\ & \text { Notbol training-1 } \end{aligned}$ hour	Jog-22mins Croult $\times 1$ Iop	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$		$\begin{array}{\|l} \hline \text { Football Match - } 80 \\ \text { mins } \\ \text { NetbodiMatch- } 50 \\ \text { mins } \end{array}$
3	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{aligned} & \text { Jog }-25 \text { mins } \\ & \text { Crocult } \times 210 \mathrm{ps} \end{aligned}$	$\begin{aligned} & \text { Footbal training-1 } \\ & \text { hour } \\ & \text { Netbol training-1 } \\ & \text { hox } \end{aligned}$	$\begin{array}{\|l} \text { Cycle - } 25 \text { mins } \\ \text { Crocult } \times 2 \text { lops } \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{aligned} & \text { Football Match - } 80 \\ & \text { mins } \\ & \text { metbill Match- } 50 \\ & \text { Nins } \end{aligned}$
4	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{aligned} & \text { Jog- } 30 \mathrm{mins} \\ & \text { Crcult } \times 21 \mathrm{cops} \end{aligned}$	Footbal training-1 hour Notbal trairing-1 hour	Cycle - 30 mins Crcult $\times 2$ laps	Cycle -35 mins Vielght trairing for endurance	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Rest } \end{array}$	Football Match - 80 mins Netboll Match- 50 Netboc mins
5	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{aligned} & \text { Jog- } 35 \mathrm{mins} \\ & \text { Crevili } \times 3 \mathrm{laps} \end{aligned}$	Footbal training- -1 hour Netbal training-1 hour	$\log -40 \mathrm{mins}$ Crcuit $\times 3$ lops	Jog - 40 mins Weight trabing for endurance	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	Football Match - 80 mins Netbill Nins mins
6	$\begin{array}{\|l\|l\|} \hline \text { Rest } \\ \text { Rest } \end{array}$	$\begin{array}{\|l\|} \hline \text { Log }-45 \text { mins } \\ \text { Crecult } \times 3 \text { lops } \end{array}$	Footbal training-1 hour Netbal training - 1 hour	Cycle -50 mins Creuit $\times 3$ lops	$\begin{array}{\|l\|l\|} \hline \text { Jog- } 50 \text { mins } \\ \text { weight trianing } \\ \text { for endurance } \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Rest } \end{array}$	$\begin{aligned} & \text { Footboll Match - 80 } \\ & \text { mins } \\ & \text { Netbollmatch- } 50 \\ & \text { mins } \end{aligned}$

