

Year 9 Science Knowledge Booklet

Term 5

Name:	Class:
Homework 1 Due: 21 st April	Homework 3 Due: 19 th May
Homework 2 Due: 5 th May	

Big Questions and Vocabulary

- How do atoms bond together?
- Why do atoms bond together?
- What's the difference between metals and non metal?
- If graphite and diamond are both made of Carbon, why do they have such different properties?
- Why is Sodium a very reactive metal, chlorine a very toxic substance but Sodium chloride is safe to eat?
- . What are plastics and how are they made?

Atom	Element	Compound
The smallest particle of a chemical element that can exist	A substance that cannot be broken down into other substances. It made up of the same type of atoms	A substances made up of atoms of 2 or more elements chemically bonded together
Electron	Bond	Properties
A subatomic particle. It has a charge of -1 and a negligible mass	A strong force of attraction between atoms or oppositely charged ions	The characteristics or typical features, e.g melting point, density, conductivity.
Ionic bond	Covalent bond	Metallic bond
The (electrostatic) force of attraction between oppositely charged ions. Typically a positive metal ion and negative non metal ion	The (electrostatic) force of attraction that occurs when 2 non metal atoms share a pair of electrons	The (electrostatic) force of attraction between positively charged metal ions and the delocalised electrons.
Electrical Conductivity		Intermolecular force
The ability to allow a current to flow through the substance. Requires charges / delocalised electrons that are MOBILE (free to move)	Molten Term used to describe metals / ionic compounds in a liquefied state	A weak attraction between molecules. The bigger the atom / molecule, the MORE intermolecular forces there are
Allotrope		Boiling point
Two or more different physical	Aqueous	
forms in which an element can exist, e.g Diamond and Graphite are both allotropes of Carbon	Dissolved in water	The temperature at which a substance changes state from a liquid to a gas
Melting point	Monomer	Polymer
The temperature at which a substance changes state from a solid to a liquid	A small molecule that contains a C=C double bond (an alkene)	A long chain molecule made up of a repeat unit of monomers
Fullerenes	Alloys	Malleable
Molecules of carbon atoms with hollow shapes, e.g Buckyballs and carbon nanotubes	A mixture of metals, the quantities are typically carefully controlled to give specific properties	Can be bent or hammered into shapes.

Science Homework Task 1

Read all of this knowledge organiser.

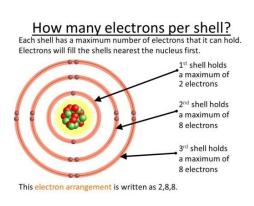
Sample Extended Questions / Practical based questions

What are the typical properties of metals, and how do these compare to non-metals?

Compare the similarities and differences between ionic, covalent and metallic bonding

Give some typical properties of Sodium, Chlorine and Sodium Chloride and describe why they are different

Compare the structure and bonding in graphite and diamond, and explain the effect on their properties

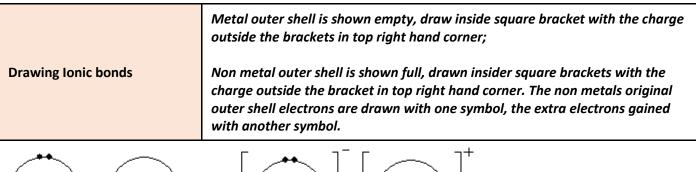

The majority of elements found in the periodic table do not exist as single atoms, instead they gain, lose or share electrons to get to a more stable electron configuration. The only elements that exist as single atoms are the group 0 elements (the noble gases). This is because they already have a stable electron configuration (full outer shell

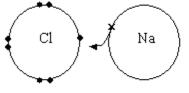
There are 3 types of bonding

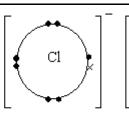
Ionic	Occurs when metals form compounds with non metals	The electrostatic force of attraction between oppositely charged ions	
Covalent	Occurs within non metal elements or compounds	The electrostatic force of attraction between shared pair of electrons and the nuclei of the atoms	
Metallic	Occurs within pure metals or alloys	The electrostatic force of attraction between positive metal ion and the sea of delocalised electrons	

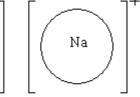
Within each type of bond, there is something positively charged, and something negatively charged, this is the electrostatic force of attraction.

Type of bond	Preamble	Positive charged thing Negatively charged thi	
lonic	The electrostatic force of	Postive charged ion	Negatively charged ion
	attraction between	(typically the metal ion)	(the non metal ion)
Covalent		Positively charged nucleus	Shared pair of electrons
Metallic		Positively charged metal	Sea of delocalised
		ion	electrons




E.g an atom of Chlorine. A chlorine atom has 17 electrons. 1st shell max of 2 This leaves 15 2nd shell max of 8 This leaves 7 3rd shell max of 8 The 7 go in this shell The configuration therefore is 2,8,7. E.g Sodium ions. A Sodium atom has 11 electrons 1^{st} shell max of 2 This leaves 9 2^{nd} shell max of 8 This leaves 1 3^{rd} shell max of 8 The 1 goes in this shell The configuration therefore is 2,8,1To get a complete outer shell, it needs to lose the 1 outer electron $[2,8]^+$


When considering the number of covalent bonds or the charge on the ions we need to know the number of outer shell electrons. The inner shells does not affect the bonding.


Ionic bonding → Charge on ions

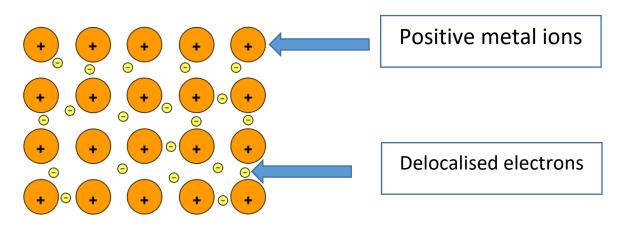
Group 1 elements	Single positive charge, e.g Li ⁺ Na ⁺ K ⁺
Group 2 elements	Double positive charge, e.g Be ²⁺ Mg ²⁺ Ca ²⁺
Group 3 elements	Triple positive charge, e.g Al ³⁺
Group 5 elements	Triple negative charge, e.g N ³⁻ P ³⁻
Group 6 elements	Double negative charge, e.g O ²⁻ S ²⁻
Group 7 elements	Single negative charge, e.g F ⁻ Cl ⁻ Br ⁻

 $\overset{\times}{O}_{\times}^{\times} \longrightarrow [\mathsf{Mg}]^{2+} [\overset{\times}{\bullet} \overset{\times}{O}_{\times}^{\times}]^{2-}$

two electrons transferred from Mg to O

<u>Covalent bonding \rightarrow Number of bonds formed per element</u>

Group 4 elements	4 single bonds overall formed per element (or 2 double bonds, or 1 double 2 single bonds)
Group 5 elements	3 single bonds overall formed per element (or 1 double 1 single)
Group 6 elements	2 single bonds overall (or 1 double bond)
Group 7 elements (and hydrogen)	1 single bonds.


Drawing Covalent bonds	Drawn like a Venn diagram, the unpaired outer electrons of the central atom pair up with unpaired electrons of the other atoms. Each overlap is where the bond forms, 1 pair of electrons is a single bond, 2 pairs of electron is a double bond.
------------------------	--

Metallic bonding → Charge on ions

Group 1 elements	Single positive charge, e.g Li ⁺ Na ⁺ K ⁺
Group 2 elements	Double positive charge, e.g Be ²⁺ Mg ²⁺ Ca ²⁺
Group 3 elements	Triple positive charge, e.g Al ³⁺

netal ions, labelled, along with electron y arranged around the ions. The number of he charges on the ions.
y

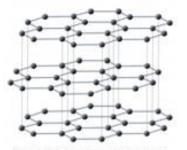
Feature	Type of Bonding			
	Ionic	Simple Covalent	Giant Covalent	Metallic
Type of elements	Metal – Non metal	Non metal – Non metal	Non metal – Non metal	Metals
Interaction	Positive (metal) ion to Negative (non metal) ion	nucleus attracted to shared pair of electrons	nucleus attracted to shared pair of electrons	Positive metal ions to the DELOCALISED electrons
Melting point	High	Low	High	Normally High
Conductivity	Not when solid but does when molten or aqueous as ions are mobile	Doesn't conduct, no mobile ions or delocalised electrons	Doesn't conduct (except graphite which has delocalised electrons)	Good conductors of heat and electricity as they have delocalised electrons to transfer energy
Examples	NaCl, MgO	O ₂ , CO ₂ , H ₂ O	Graphite, Diamond, Silicon dioxide	Fe, Au, Na, Cu

Properties

Melting point \rightarrow The temperature needed to get a change in state from a solid to a liquid.

The temperature needed depends on the strength of the interactions that need to be broken / weakened.

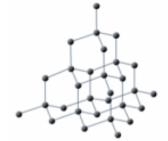
Ionic, Covalent and Metallic bonds are very strong, and need a large amount of energy to be broken.


Intermolecular forces occur between all molecules, these are very weak by comparison and don't need a lot of energy to break.

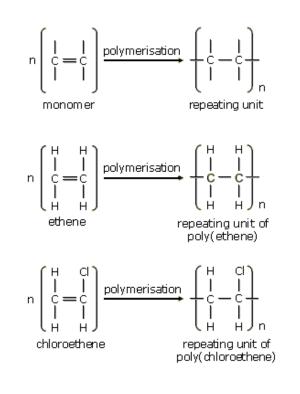
In simple covalent structures, only the intermolecular forces are broken, NOT the covalent bonds. This is why they are often gases and liquids at room temperature

Graphite

- Each carbon forms 3 bonds
- Soft/slippery as it has layers held together by weak forces


• Can conduct electricity (1 electron free per carbon

Graphite (solid lines are strong covalent bonds, dotted lines are weak inter-layer bonds)


Diamond

- Each carbon forms 4 bonds
 - Very hard as held together by strong covalent bonds
 - Can't conduct electricity because ALL of the electrons are in bonding

Diamond (all bonds are strong covalent bonds)

Polymers are long chain molecules formed from monomers. The monomers are alkenes, containing a double bond. During polymerisation, the double bond breaks and a single long chain molecule is formed. Due to the very long chains, the intermolecular forces are stronger so they have higher melting points than the monomers.

Explain how copper conducts electricity.

	Link to the delocalised electrons and how they are delocalised by describing structure of metal
	(2)
Explain why diamond is hard.	
	Typical question linked to diamond. Discuss the number of bonds each carbon atom forms and what you would need to do to break them (2)
escribe the structure and bonding in sodium chloride.	Describe first how the ions form then link to the arrangement.

No need to link to properties as its not in the question

As it is 4 marks, key words / phrases are vital here

Pillar

<u>Literacy – Learn these spellings</u>	Memory – Learn the definitions for			<u>Video -</u> Watch these videos
Electrostatic Covalent Intermolecular Fullerene	Ionic bonding → Electrostatic force of at between oppositely charged ions Covalent bonding → Electrostatic force of between shared pair of electrons and nu atoms	of att clei c	traction of the	Ionic bonding 1 → https://www.youtube.com/watch?v=Biq- e9hsbil Ionic bonding 2 → https://www.youtube.com/watch?v=- DZROOLQC9w Bronecting Lonic bonding →
Fullerene	Metallic bonding → Electrostatic force o			Properties Ionic bonding → https://www.youtube.com/watch?v=leVxy7c
Polymer	between possible metal ions and sea of delocalised electron Diamond → Allotrope of Carbon, atoms are arranged in giant covalent lattice (tetrahedral arrangement)		iZMU Covalent bonding 1 → https://www.youtube.com/watch?v=lenvZEc	
Delocalised				
Allotrope	with each carbon atom bonded to FOUR	-	-	$\frac{Mc60}{Covalent bonding 2 \rightarrow}$
Lattice	Graphite → Allotrope of Carbon, atoms a in giant covalent lattice (hexagonal arran each carbon atom bonded to THREE othe	gem	-	https://www.youtube.com/watch?v=lhEm7a AKIDg Properties covalent bonding → https://www.youtube.com/watch?v=DECG NvC-x s
Exam Practice (turn over)]	Research	
BUG the question (draw a Box arou scientific key words, Go for the right			iron are cha	ernet to find out how the properties of nged when other elements are added

Complete the exam questions on the back of this page.

Question

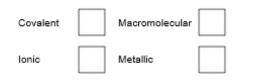
Read through the four slides on this website https://www.bbc.co.uk/bitesize/guides/z9twsrd/revision/1 and make a summary table comparing the similarities and differences in the giant covalent compounds Silicon dioxide, diamond, graphite and graphene

when forming the alloy steel

Skills you are working on

Learning spellings using look, cover, write, check. Making notes from the video.

Using memory techniques to learn the definitions. Understand what the exam questions are asking. Using key words in your answers.


Exam Question

Q1. This question is about structure and bonding.

(a) Figure 1 shows part of the structure of calcium oxide (CaQ).

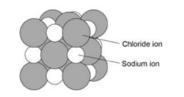
Figure 1

What type of bonding is present in calcium oxide? Tick one box.

(b) Figure 2 shows a particle of methane (CH₄).

Figure 2

What type of particle is present in Figure 2? Tick one box.


, This question is about structure and bonding.
(a) Figure 1 shows part of the structure and bonding in diamon
Figure 1

Explain why diamond has a high melting point.

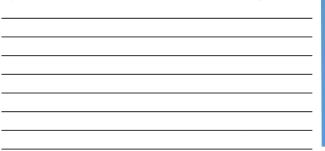
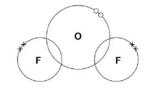


Figure 2 shows part of the structure and bonding in sodium chloride (NaCI).

Figure 2

Explain the conditions needed for sodium chloride to conduct electricity.



This question is about oxygen.

(a) One oxygen atom shares one pair of electrons with each fluorine atom in oxygen difluoride (OF₂).

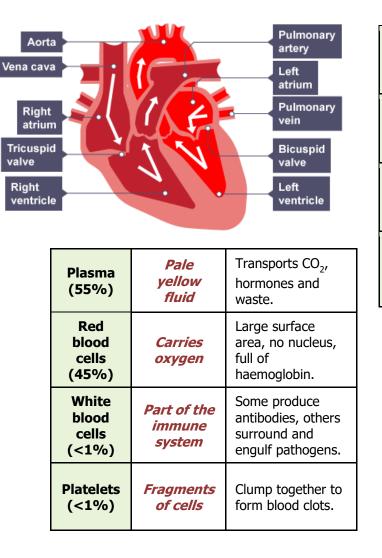
Complete the dot and cross diagram of oxygen difluoride below.

You should show only the electrons in the outer shells.

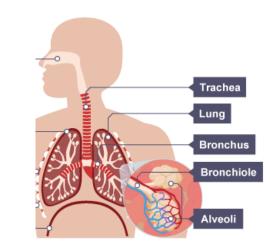
(b) Oxygen difluoride (OF2) has a melting point of - 224 $^{\circ}C$ and a boiling point of -145 $^{\circ}C$

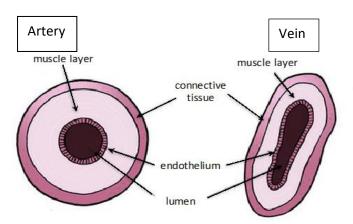
What is the state of oxygen difluoride at room temperature?

Explain your answer in terms of structure and bonding.


Big Questions and Vocabulary

- What is blood?
- How does the heart work?
- What do stomata do?
- How do substance move around a plant?
- How do we break down food?

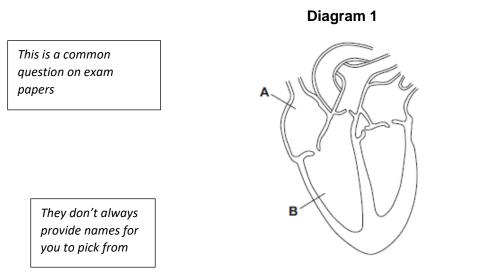

Active site Region of an enzyme where substrate molecules bind and undergo a chemical reaction.	Alveolus A tiny air sac in the lungs, where gas exchange occurs	Amylase An enzyme that catalyses the hydrolysis of starch into sugars.
Benign Normally slow growing tumours that do not spread to other parts of the body.	Blood A tissue which transports substances around the body in the circulatory system.	Blood Vessels Structure specially adapted to carry the blood around the body
Denature The active site of an enzyme changes shape and the enzyme is no longer able to function.	Enzyme Protein molecule that catalyses chemical reactions inside cells and the body.	Malignant A tumour that can spread through the body for example via the blood stream (metastasise).
Non-communicable disease A disease that cannot be transferred from organism to organism.	Organ A group of similar tissues working together to perform a particular function.	Organ System A group of organs working together to perform a particular function.
Pacemaker A group of cells located in the right atria of the heart that regulates the	Risk Factor Something that increases a chance of developing a disease. Risk factors can	Statin A drug used to reduce cholesterol in the blood. Can be used to treat CHD.
heart rate.	be caused by lifestyle factors or substances in a person's body or their environment.	
heart rate. Stent Stents are made from metal alloys and are used to widen the coronary arteries if they have been blocked due to CHD.	substances in a person's body or their	Substrate The molecule that fits into the active site of an enzyme.


Organ Tissue	isation	A group of cells with a similar structure and function e.g. muscle tissue					e 'lock and key ry' is a simplified odel to explain	The activity of enzymes temperatu	is affected by changes in ire and pH
Organ				ng a specific function e.g. heart, leaf			nzyme action	Enzymes activity has an	Enzyme activity has an
Organ S	System	A group of organs that	at perform a spec	specific function e.g. digestive system.				optimum temperature optimum ph	
8	Digestive sy mouth	oesophagus stomach	Enzymes Key Enzyme Substrate Lock and Key Model Denatured	A biologic up the rat being used protein m The chemi active site Only one t into the a like a key fi When the a changes s	cal that fits into the of an enzyme. ype of substrate can f ctive site of an enzyme ts into a lock. octive site of an enzyme hape and the substrate	it spe living the sh ne se	types catalyse cific reactions in gorganisms due to hape of their active site		erature or pH can stop working (denature)
-	small	anus			emperature. Carbohydrases (e.g. amylase)		Made in salivar glands, pancrea small intestine	substrate no longe Break down carbo sugar (e.g. amyla	
	e Chemical	cal Molecules Test e/brown iodine solution	Positive F Colour turn blue/blac	ns to	Proteases	Enzymes	Made in stomaci pancreas	b, Break down prote	in to amino acids.
Sugar		enedict's solution. Pla water bath for 5 minut	tes. yellow/ o brick red		Lipases		Made in pancrea (works in small intestine)	Break down lipids (fats) to glycerol and fatty acids).	
Protein Lipid	Add blue B Add Sudar	iuret solution. n III.	Colour turns to lilac/ purple. 2 layers form, red layer on top.		Bile (not an enzyme)		Made in liver, stored in gall bladder,	Emulsifies lipids to increase surface area to increase the rate of lipid break down by lipase. Changes pH to	

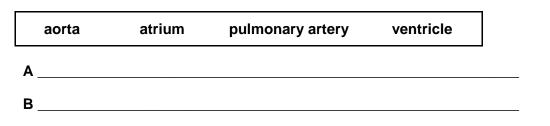
Pumps blood to the Different structure in the heart have different functions Right lungs where gas ventricle exchange takes place. Pumps blood around Left the rest of the body. ventricle Controls the natural Pacemaker resting heart rate. (in the Artificial electrical right pacemakers can be atrium) fitted to correct irregularities. Carry oxygenated Coronary blood to the cardiac arteries muscle. Prevent blood in the Heart heart from flowing in valves the wrong direction.

Trachea	Carries air to/from the lungs	Rings of cartilage protect the airway.
Bronchioles	<i>Carries air to/from the air sacs (alveoli)</i>	Splits into multiple pathways to reach all the air sacs.
Alveoli	<i>Site of gas exchange in the lungs</i>	Maximises surface area for efficient gas exchange.
Capillaries	Allows gas exchange between into/out of blood	Oxygen diffuses into the blood and carbon dioxide diffuses out.

	Artery	Vein	Capillary
Purpose	Takes blood away from the heart.	Takes blood back to the heart.	Exchange of substances between blood and cells.
Adaptations	Thick wall to withstand high pressure	Thin wall. Valves to prevent backflow of blood.	Wall is one cell thick to allow quick diffusion of substances.

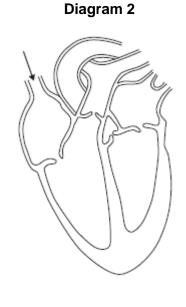

Capillary

endothelium one cell thick


Heart Dise						Ca	ncer		The result of chan uncontrolled g		
Coronary Heart Diseas	Build-up of fatty material in coronary arteries . Can lead to a blood clot and a heart se attack .								-		
Treatment	What it is	Advantage		Disadvanta	tage		mian	Cont	tained in one area o	fthe hedu (
Stent			s artery open. Low-risk	Fatty materia		Benign tumour		Contained in one area of the body (usually by a membrane) – not cancer.			
Statin	Drug that reduces cholesterol .	Redu arteri	ces fat being deposited i es.	n Side effects e damage.	e.g. liver						
Heart transplant	Replacement heart from a donor.	Long	term.	Major surger Could be reje		Malignant tumour		Invade tissues and spread to different parts of the body to form secondary tumours.			
Artificial hear	t Man-made heart used while waiting for a transplant.	Not r alive.	ejected. Keeps patient	Short life-tim Battery has to transported. Limited activi	o be			cancers have genetic risk factors.		actors.	These risks factors can
Mechanical heart valve	Mechanical replacement of faulty heart valve.	Can last a life-time.		Can damage cells.	/	Carcinogens ar ionising radiatic increase the risk		on 🛛	n Risk factors for heart/lu of disease and certain typ	ain types	also affect the brain, liver and
Biological heart valve	Biological replacement of faulty heart valve.	Don't	damage red blood cells.	Valve harden need replacir		cancer by changing/ damaging DNA		4	of cancer include alcohol, diet, obe smoking	esity and	the health of unborn babies
Transpiration	and then out through the stomata. The movement of water from the roots, up the stem to the leaves. The movement of		Epidermis Xylem Phloem	roots around th Carries dissol hrough photos plant. 6	e.59 and minerals e plant. ved sugars m ynthesis aroun	minerals from the nt. sugars made		Sunlight Upper epidermis Palisade mesophyll Spongy			Waxy cuticle Xylem Air space
Translocation				chloroplasts. Absorbs light. pongy mesophyll Some photosynthesis. Has air spaces for diffusion of CO2 and O2. uard cells Cells that open and close stomata. Opening that allows CO and O to Content open and close stomata.			Lower Guard cells			Cuard cells with chloroplasts	
	tors Affecting Transpiration Increasing temperature increases the transpiration rate as water evaporates quickly. idity Increasing humidity decreases the rate of transpiration as water evaporates slowly. Increasing wind speed		Stoma			Id O ₂ to		Leaf Structure		·]	
Humidi			Cell Adapta	tions for Ma	ovement Wit	hin Plants					
Wind s	increases the transpiration		Root hair cel Extension o surface are	jives a large	Xylem Vessels are s by lignin to		hened		em of cells contain es to allow	Guard ce	ells and Stoma ells can open the o allow gas
Light	rate of transpiration as stomata open.		water and	minerals.	pressure. Cell walls are			disso	olved sugars to e between cells.	exchan	ge or close to t water loss.

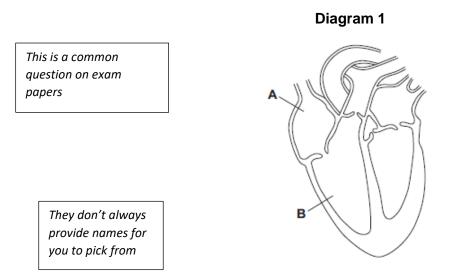
Q1.

Diagram 1 shows a section through the heart.



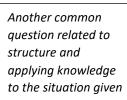
(a) Use words from the box to name the structures labelled **A** and **B** on **Diagram 1**.

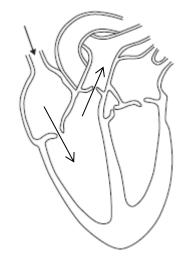
(b) Draw arrows on **Diagram 2** to complete the route taken by <u>deoxygenated blood</u> through the heart.


Another common question related to structure and applying knowledge to the situation given

Key part – can you remember which side of the heart this travels through?? (2)

Q2.


Diagram 1 shows a section through the heart.



(a) Use words from the box to name the structures labelled **A** and **B** on **Diagram 1**.

aorta	a atrium	pulmonary artery	ventricle			
Α	Atrium					
В	Ventricle					

(b) Draw arrows on **Diagram 2** to complete the route taken by deoxygenated blood through the heart.

Diagram 2

(2)

Science Homework Task 3

Read all of this knowledge organiser and revise ready for the end of term Pillars test, there will be questions on Bonding, Organisation and Energy. Make sure you can answer these questions.

Question	Answer
Which 2 particles are found in the nucleus of an atom?	
What type of bond forms between two non- metals?	
What type of bond forms within metals?	
What type of bond forms between a non-metal and a metal?	
What type of bond is found in diamonds?	
What ion if formed when sodium loses an electron?	
How are atoms arranged in a metal?	
Two muscles working in pairs are called?	
What do we call 2 or more different tissues working together to carry out a function?	
How long is an average human pregnancy?	
What 4 things does your skeleton/ bones do?	
What is the definition of a tissue?	
Give the definition of osmosis	
Give the definition of active transport	
What is the unit of energy?	
What term describes energy that has spread out to the surroundings?	
What is the name of the energy store in a battery?	
What is the name of the energy store in a stretched spring?	
What do we call energy transferred to where it is wanted?	