Name:

Class:

Order	Unit	Links	Pre-requisite skills
1	Integers, powers \& roots		
2	Lines, angles \& shape		
3	Simplifying \& substituting	Unit 1	Using powers, listing factors, understanding product / sum.
4	Area and perimeter	Unit 2	Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions.
5	Calculations \& Accuracy	Unit 1	Understanding numbers.
6	Construction and LOCI	Unit 2	Measuring angles for bearings, parallel line angle facts.
7	FDP	Unit 1	Using powers, understanding lowest common multiples.
8	Sequences, functions and graphs	Unit 3/5	Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives.
9	Ratio \& Proportion	Unit 1/7	Decimals/powers as multipliers, calculating/understanding fractions as parts.
10	Transformations	Unit 2/8	Identifying 90/180/270 degrees, plotting mirror lines of basic functions.
11	Pythagoras and Trigonometry	Unit 1/2/3/4/5	Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers.
12	Forming and solving	Unit 3/4	Properties of 2d shapes, angle facts including polygons \& parallel lines, algebraic notation and simplifying, forming expressions.
13	Measures	Unit 1/7	Calculating, multiplying decimals and powers of 10 for metric conversions.
14	Volume and Surface area	Unit 4/5/13	Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry.
15	Probability	Unit 1/7	Types of numbers, calculating with fractions \& decimals.
16	Inequalities	Unit 12/8/5/7	Solving equations, rounding, plotting graphs for regions, calculating with fractions.
17	Statistics	Unit 1/6/9/16	Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data.

Homework 1 Due

Homework 2 Due

Year 10 - Term 5: Higher

Overview	Learning Objective		
Iopic: Measures Big Questions - What happens to time as speed increases? - What happens to speed as time increases? - What is the difference between speed and acceleration?	- Understand compound measures. - Solve SDT problems. - Solve basic MDV questions. -Convert compound measure problems. E.g 80km/h into mph - Interpret distance time graphs.	- Use compound measures such as speed and density. - Draw and interpret distancetime graphs. - Solve simple speed problems. - Calculate complex average speeds from distance-time graphs.	- Interpret velocity-time graphs. - Calculate distance travelled by calculating the area under a ve-locity-time graph. - Discuss and interpret graphs modelling real situations
Iopic: Volume and Surface Area Big Questions - The volume of a cuboid is $120 \mathrm{~m}^{3}$. What could it's dimensions be? - A prism has a cross section of $8 \mathrm{~cm}^{2}$ and a volume of $80 \mathrm{~cm}^{3}$. What is its length?	- Calculate the volume of pyramids. - Calculate the surface area of pyramids - Calculate the volumes of cones - Calculate the surface areas of cones	- Calculate the volume of spheres. - Calculate the surface area of spheres. - Find the volume of the frustum of a truncated cone.	
Topic: Probability Big Questions - What is the same/ different about the problems here: - A bag contains 4 blue counters and 5 red counters. Julie picks a counter, replaces it, and then picks again. - A bag contains 4 black counters and 5 pink counters. Sandra picks out two counters - A bag contains 5 blue counters and 4 red counters. Walt picks a counter, replaces it, and then picks again.	- Draw tree diagrams and use them to find probabilities of successive dependent events. (Both with \& without replacement)	-Calculate probabilities using Venn diagrams. (3 circles).	-Answer Venn diagrams questions using the notation of ' u ' and ' n '

.

, | $\begin{array}{l}\text { rs is not } 3 \text { hrs and } 10 \text { minutes! }\end{array}$ | $\begin{array}{l}0.25 \text { hours is not } 25 \text { minutes! } \\ \text { It is a quarter of an hour, therefore } 15 \\ \text { minutes }\end{array}$ |
| :--- | :--- |
| .1 is worth 6 minutes. | $\begin{array}{l}\text { Another way to change the units is to } \\ \text { multiply the decimal part by } 60\end{array}$ |
| | So, 0.25 hours is calculated: |
| hours is 3 hours 6 minutes | $0.25 \times 60=15$ minutes |
| 0.1 hour $=6$ minutes | 0.6 hour $=36$ minutes |
| 0.2 hour $=12$ minutes | 0.7 hour $=42$ minutes |
| 0.3 hour $=18$ minutes | 0.8 hour $=48$ minutes |
| 0.4 hour $=24$ minutes | 0.9 hour $=54$ minutes |
| 0.5 hour $=30$ minutes | 0.25 hour $=15$ minutes | Other real life graphs

Graphs can be used to represent a number of real life
situations. It is important to read the labels on both
axes to determine the meaning of the graph.
Example:
A test tube containing a chemical liquid is used in an experiment. During the
parts of the graph to do the statements below.

1. Liquid is added slowly to the test tube. 2. The level of the liquid remains constant.
2. Some liquid is poured out quickly. 4. Some liquid is poured in quite quickly
3. The test tube is emptied.
Imperial and Metric Conversions
The ones that you need to memorise are:

$$
\begin{aligned}
& \text { train which travels } 243 \mathrm{~km} \text { in } 2 \mathrm{hrs} 15 \text { mins. } \\
& \text { Speed }=\text { Distance/Time } \\
& \text { (Time }=2 \mathrm{hrs} 15 \mathrm{mins} \text {) }
\end{aligned}
$$

Distance-Time Graphs
Gradient $=$ speed

(A) Question

Distance-time graphs
$(15 \mathrm{mins}=0.25 \mathrm{hr})$

$$
\frac{243}{2.25}
$$

Speed =
The train is travelling at $108 \mathrm{~km} / \mathrm{h}$.

Answer

$10 \square \square$

time ins
Speed $=108 \mathrm{~km} / \mathrm{h}$
Knowledge Recall
Term5 HW: 1

A prism is a shape which has a uniform cross-section.
The volume of a prism is the area of the cross-section x
the length. Below are examples of prisms.

G	
(1)	$\bigcirc{ }^{\text {諺 }}$
$00 \sqrt{6}$	$8 \frac{1}{\square / 1}$
$\sqrt{\frac{1}{2}}$	$\mathbb{H}^{\frac{1}{2}}$

Knowledge Recall
Section A:Number
Term5 HW: 2
Date Due:

Section C: Using and applying	
21. Linear-Quadratic-Cubic-Reciprocal	

21. Linear-Quadratic-Cubic-Reciprocal
Which type of function is represented by
this equation?
$y=x^{3}-2 x^{2}$
22. Whatinatat? \begin{tabular}{l}
uality is represented here?

\hline \multirow{2}{|c|}{$|$| |
| :--- | :--- | :--- | :--- |}

\hline
\end{tabular}

WLEDGE ORGAN-
20 students were asked if they watched tennis.
13 boys did not watch tennis.
17 girls watched tennis.
two different bits of information.
Knowledge Recall
Term5 HW: 3

