

Year 10 Maths Foundation Knowledge Booklet Term 1

Name:

Class:

Order	Unit	Links	Pre-requisite skills
1	Integers, powers & roots		
2	Lines, angles & shape		
3	Simplifying & substituting	Unit 1	Using powers, listing factors, understanding product / sum.
4	Area and perimeter	Unit 2	Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions.
5	Calculations & Accuracy	Unit 1	Understanding numbers.
6	Construction and LOCI	Unit 2	Measuring angles for bearings, parallel line angle facts.
7	FDP	Unit 1	Using powers, understanding lowest common multiples.
X	Sequences, functions and graphs	Unit 3/5	Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives.
9	Ratio & Proportion	Unit 1/7	Decimals/powers as multipliers, calculating/understanding fractions as parts.
10	Transformations	Unit 2/8	Identifying 90/180/270 degrees, plotting mirror lines of basic functions.
11	Pythagoras and Trigonometry	Unit 1/2/3/4/5	Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers.
12	Forming and solving	Unit 3/4	Properties of 2d shapes, angle facts including polygons & parallel lines, algebraic notation and simplifying, forming expressions.
13	Measures	Unit 1/7	Calculating, multiplying decimals and powers of 10 for metric conversions.
14	Volume and Surface area	Unit 4/5/13	Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry.
15	Probability	Unit 1/7	Types of numbers, calculating with fractions & decimals.
16	Inequalities	Unit 12/8/5/7	Solving equations, rounding, plotting graphs for regions, calculating with fractions.
17	Statistics	Unit 1/6/9/16	Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data.

Homework 1 Due	
Homework 2 Due	
Homework 3 Due	

Overview	Learning Objective	
Topic: Integers, Powers and Roots Big Questions - Which has the greatest value $(2^3)^4$ or $(2^4)^3$? - List all the factors of m ² n ² p - Who might use standard form in their jobs? - What's the same and what's different about 3 x 10 ⁶ and 3 x 10 ⁻⁶ ?	 Calculate HCF and LCM of pairs of numbers. Know that anything to the power of 0 is 1. Know and use the index laws for multiplication and division of positive integer indices. 	-Convert from ordinary to standard form. Both positive & negative powers. - Convert from Standard form to ordinary numbers. - Know that (a ^b) ^c = a ^{bc}
Topic: Lines, angles and shapesBig Questions- A square and a regularhexagon tessellate with anotherregular shape. How many sidesdoes this shape have?- Why do exterior angles alwaysadd up to 360°?- What is the correct name for anF angle?	 Use angle facts to solve problems involving triangles. Use angle facts to solve quadrilateral problems. Circle definitions. Calculate interior and exterior angles of a regular polygon. Solve problems involving corresponding, alternate and supplementary angles. 	- Recognise tangents, arcs, sectors and segments of circles.
Topic: Simplifying and substituting Big Questions - What's the same/different - 6y+3y and 3(2y+y) and 9y - List all the factors of 24 / 13 / 60 - Show that a ² b ² - 16x ⁴ is the difference of to squares.	 Substitute numbers into an expression. Substitute numbers into a formula and more complicated formula. Substitute numbers into more complicated formula. Expand single brackets. 	-Expand and simplify. - Expand quadratics. - Interpret basic functions. (f(5)) - Factorise single brackets.

	Integers "Integer" is just a posh word for <u>whole number</u> . The thing to remember is that integers can be positive or neg. Shared by two or more things . So: 1, 7, 298, -3, 0 and -49 are all integers, but 2.5 is not and neither is 3_8^8 ! The Multiples The Multiples of a number are all the numbers in <u>your number's times table</u> . Don't forget: you must count the number itself! e.g. Some multiples of 7 are: 7, 14, 21, 28 but there are loads more, like 700 and 4445 Factors The Factors of a number are all integers that <u>divide into your number exactly</u> (there must not be a remainder!) Don't forget: 1 is a factor of all numbers, and so is the number itself! e.g. The factors of 12 are: 1, 2, 3, 4, 6 and 12	Remember	$a^{2} + a^{2} = 2a^{2}$ <u>BUT</u> $a^{2} \times a^{2} = a^{2}$	Steps to 1: Identify the square on either side. estimate a 2: Place the squares and their roots at either square root		6: Square your answer to check.		ary numbers 2 × 10 ¹⁵ and 1.5 × 10 ⁻¹²	0.0000072 =	Look at the power: positive the number will get bigger, if negative the number will be smaller.
S & ROOTS KNOWLEDGE ORGANISER		7, 23, and 67 are examples. 1 is <u>not</u> a prime number. 5 is the base in 5 ³	3 is the index in 5 ³	3 to the power of $2 = 3^2$	The reciprocal of 4 is $\frac{1}{4}$	which is equal to 0.25	Standard Form A number in standard form must be written in this way.	Going from standard form to ordinary numbers $5 \times 10^{10} = 50000000000000000000000000000000000$		Look at the power: positive the nur
INTEGERS, POWERS & R	Lowest Common Multiple and Highest Common Factor First draw a PFT and then place in the venn diagram. 28 28 28 7 3 3 2 $7 2 3 3 2$ $14 2 2 2 7 3 3 2$ $14 2 2 2 7 3 3 2$ $14 2 2 2 7 3 3 2$ $14 2 2 2 2 2 3 3 2$ $114 2 2 2 2 2 3 3 2$ $3 2 2 2 2 2 2 2 3 3 2$ $3 2 2 2 2 2 2 2 2 3 3 2$ $3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$	A positive integer greater than 1 that can only be divided by itself and 1 without leaving a remainder. The big number on the <u>left</u> ; the number that	will be multiplied by itself. The small number on the top-right; the number of times a value is multiplied by itself.	Another word for index. Plural of index	The reciprocal of a number is one divided by that number	- LLL	5 ⁰ = 1	$m \qquad x^2 \times x^3 = x^{2+3} = x^5$	$x^5 \div x^2 = x^{5-2} = x^3$	$(\boldsymbol{x}^3)^2 = \boldsymbol{x}^3 \boldsymbol{\times}^2 = \boldsymbol{x}^6$
Naton		Prime Number A positive i be divided remainder. Base The big nur	will be m Index The small number o	Power of Another word exponent Plural of index	Reciprocal The reciproc that number		$\begin{array}{c c} 1 & x^{*} = x \\ 2 & x^{0} = 1 \end{array}$	$3 \qquad \mathbf{x}^n \times \mathbf{x}^m = \mathbf{x}^{n+m}$	$4 \qquad \mathbf{x}^n \div \mathbf{x}^m = \mathbf{x}^{n-m}$	$5 \qquad (\boldsymbol{x}^n)^m = \boldsymbol{x}^{n \boldsymbol{x} m}$

Knowledge Recall

Date Due

Score to beat

Term 1 HW: 1

Section A-Number	Section R. Algebra Geometry & measures	Section C. Heing and analying
1. Which is bigger: $\frac{3}{7}$ or $\frac{2}{5}$?	11. Expand: 3(x + 5)	21. Work out the area of a parallelogram of base 6cm and height 8cm.
2. Which is bigger: 0.45 or $\frac{2}{5}$?	12. Factorise: 3x + 9	
3. Increase £30 by 15%	13. Solve: 2(x – 5) = 7	22. Three of the angles of a quadrilateral
4. Decrease £40 by 15%	14. Solve: 3x + 1 = 2x + 10	are 120°, 48° and 92°. What is the size of the 4 th angle?
5. Write 4 : 8 in form 1: n	15. Find the 10th term 1 3 5 7 9	 Work out the area of a triangle of base 6cm and height 8cm.
10 pens cost £2.50Find the cost of 7pens	16. If T(n) = 3n – 1, what is the 3 rd term?	
7. Estimate: 32 x 43	17. If $y=3x + 2$, find the value of y when $x = -2$	24. If the probability of rain is 0.87, what is the probability of NO rain?
8. If 36 x 47 = 1692 What is 3.6 x 47?	18. If $y = -3x - 2$, find the value of y when $x = 2$	
9. Add: $\frac{1}{3}$ and $\frac{1}{4}$	$\frac{Use \pi = 3}{19}$ 19. Calculate the area of a circle with radius of 5cm	25. Work out the volume of a cuboid 5cm by 3cm by 6cm?
10. Work out: $\frac{2}{5}$ of 8	$Use \pi = 3$ 20. Calculate the length of the circumference of a circle with diameter of 6cm	
Total (A)	Total (B)	Total (C)
Test Total (A+B+C)	R (0-9) Y (10-19))-19) G (20-25)

	Internal angle + external angle = 180° Internal angle angle	Exterior angles of a add up to 360° polygon	The interior and exterior add up to 180° angle of any polygon	The sum of the interior (number of sides-2) × 180° angles of a polygon can be found by using the formula	Regular polygons have all sides the same length and all angles the same size		Polygon	Quadrilateral 90° 360° 2	Pertagon 540° 3	Hexagon 720° 4	Heptagan 000° 5	Octagon 135° 1080° 6	Nonagon 140° 1260° 7	Decagon 144° 1440° 8
SER		Exterior (polygon	The inter angle of a	The sum of angles of found by formula	<u>Regular</u> p sides the all angles	Number	9 9	4 Qua	5 	ž v	7 He	8	2 0	10
LINES, ANGLES AND SHAPES KNOWLEDGE ORGANISER	Quadrilateral Properties Square A square is a regular quadrilateral. Square A square is a regular quadrilateral. All angles are equal (90°). All angles are of quadrilateral. Opposite sides are prallel. The diagonals bisect each other at 90°.	Rhombus Diagonally opposite angles are equal.		Rectangle All angles are equal (90°). Opposite sides are of equal length.		Parallelogram • Diagonality opposite angles are equal.	Opposite sides are parallel. The diagonals bisect each other.	Trapezium One pair of opposite sides is parallel.		Cite Two names of olders are of securit lanorth	Ą	• The diagonals cross at 90°.		
LINES, ANGLES /	acute angle ess than 90°		A reflex angle is more than 180°	× ▼	×	X			•	The distance around the edge of the circle		The distance across the circle from edge	A straight line that touches the circle	
di la	Types of Angles		le is but	ht line sum to 180	Opposite angles are equal	Angles round a point sum to 360⁰	Alternate angles are equal	Corresponding angles are equal	Co-interior angles sum to 180 ⁰	The distance	The distance	The distance to edge onin	A straight li	
U 出	A right angle equals 90°		An obtuse angle is more than 90° but less than 180°	Angle Figs Angles on a straight line sum to 180 0	Opposite an,	Angles round a	Alternate an	Corresponding	Co-interior ang	Circumference	Radius	Diameter	Tangent	

Knowledge Recall

Date Due

Score to beat

Section A:Number	Section B: Algebra Geometry & measures	Section C: Using and applying	lying
1. Which is bigger: $\frac{3}{4}$ or $\frac{2}{3}$?	11. Factorise: 5x + 20	21. Work out the area of a parallelogram of base 10cm and height 4cm.	ırallelogram 4cm.
2. Increase £60 by 15%	12. Solve: 3x + 5 = 14		
 3. 10 pens cost £4.00 Find the cost of 7pens 	 13. If T(n) = 4n - 1, what is the 3rd term? 	22. Three of the angles of a quadrilateral are 53 ⁰ , 127 ⁰ and 72 ⁰ .	uadrilateral
4. Estimate: 69 x 33	14. If $y=3x + 2$, find the value of y when $x = -3$	What is the size of the 4 th angle?	angle?
5. Work out: $\frac{2}{3}$ of 8	Use π on the calculator 15. Calculate the area of a circle with radius of 2cm (1dp)	23. A car travels at a steady speed and takes 5 hours to travel 510 miles.	ed and takes
To decrease an amount by 3%, what single multiplier would you use?	16. Expand & simplify: 4(x + 5) – 2(x – 3)	Work out the average speed?	
7. Decrease 42kg by 3%	17. Give the inequality	24. If the relative frequency of getting a 'six' on a dice is 0.3, how many sixes would you expect to get in 400 throws of the dice?	getting a 'six' ixes would ows of the
 Without a calculator work out: 0.7 x 0.1 	1 <u>2</u> 0		
9. Round off 4252 to one significant figure	 Write down the next term in this sequence: 3 8 15 24 	25. Work out the volume of this cube?	: cube?
 10. Use a calculator to work out: 2.7² + 3.9² 	20. If $y = x^3 + 3$, find the value of y when x = -1	mg	
Total (A)	Total (B)	Total (C)	
Test Total (A+B+C)	R (0-9)	γ (10-19)	G (20-25)

SIMPLIFYING AND SUBSTITUTION KNOWLEDGE ORGANISER

HOW SHOULD WE WRITE THIS?

	= p + 4	9-6=	€ م	= 4y	e. H	= ba = a	ц е 11	а с "	•
OW SHOOLD WE WALLE	4 more than p	6 less than g	y × y × y	γ + γ + γ + γ	1×r	b x a	p + 3	b + d	cpression: A collection of terms.

_

(Simplified) Ä

Expressions that equal one another. (An inequality is a special ≠ equation) Equation: (Solved) An equation that is true for all values An identity seen as a general rule. of the variables (Subject) (Show) dentity: Formula:

An expression for which inputs are used to generate outputs from inputs. Eunction: (Substitute)

Constants are numbers that stand on their own.

or big numbers, like "23 849". attached to them. They can be small numbers, like "7", They will not have an "x", "y", "z", or any other variable

."z" 10 ,"γ", "x" se rhouz , letter, se a letter, such as "x", "y", Variables are symbols that stand for numbers that vary.

constant stays the same. the value of a variable can change, while the value of a The difference between constants and variables is that

Consider the family meal below. Key Facts - Adding and Subtracting

We need to group the same items together, so when we order through the drive-through its simple.

3b + f + 5c + 3b + s + 2f + m + 2m + mf + c + s + 2b

This would be a mouthful to say into the microphone when ordering ... so lets group all the same items together.

SUBSTITUTION means putting numbers where × + × SUBSTITUTION the letters are.

38

FUNCTION MACHINES

EXPANDING

EXPANDING means multiplying all terms together and simplifying.

Single brackets

= 3a + 12 "3 times (a + 4)" **Double brackets**

7

+3a σ ത н (a + 2)(a + 3)

= a² + 5a + 13 "(a + 2) times (a + 3)" means:

ဖ

g a grid.

	09-	×8-	~***	* *
	×G1-	-5×5	e*	×
	-12	×2-	*×	
			_e x) Ajdiginy	
uļ	sn -	slbii	noni	d slqitluM

 $x_3 - 5x_3 - 15x + 4x_3 - 8x - 60 = x^3 + 2x^2 - 23x$

x)(z - x)(z + x)

Iciply everything in the left hand bracket by

• (x₃ -22

Eirst two precisets expand to $x_3 + 3x - 2x - 15 = x^2 - 3x - 15$

sleimonid ows nerts erom gnibneqxe to elqmex2

3pl x 7c = 21plc v

 $(x + 3)(x - 5)(x + 4) = x^3 - 2x^2 - 23x - 60$

FACTORISING

FACTORISING means find highest common factors, (numbers, letters or both), in all terms and put back into brackets. Ę

ow to Factorise a Single Bracket	How to Factorise a Quadratic Equation
14y ² + 21y	A) How to factorise when the
Find the highest common factor of 14 and 21	coefficient of x^2 is = 1
7 is the highest common factor	x ² + 8x + 15
y is the common factor letter	 Find the factors of 15 which sum to 8.
Factorise 14 y^2 + 7y and 21y + 7y	 Factors of 15 are: 1, 15, 3, 5
7y(2y + 3)	 Only 3 and 5 sum to 8 and multiply to give 15
	3 + 5 = 8 $3 \times 5 = 15$
	(x + 3)(x + 5)
ence of Sauares	and and

 $(2a^{2} + 3b^{2})(2a^{2} - 3b^{2})(5v^{2} + 4u^{2})(5v^{2} - 4u^{2})$ $\sqrt{25(v^4)} - \sqrt{16(u^4)}$ $25v^4 - 16u^4$ $5v^{\frac{4}{2}} - 4u^{\frac{4}{2}}$ $\sqrt{4(a^4)} - \sqrt{9(b^4)}$ $4a^{4} - 9b^{4}$ $2a^{\frac{4}{2}} - 3b^{\frac{4}{2}}$ Differer

FUNCTION

relationship where each input A function is a special has a single output

Function f(x) or $x: \rightarrow or y$

It is often written as "f(x)" where x is the input value.

If you have three binomials times tage make a **quortic** expression and so on.

Knowledge Recall

Date Due_

Term 1 HW: 3

-
3
Ð
ā
2
re
8
Ň

Cartion A Minuhar	Cartion B. Alrahra Caomater & mascurae	Section C. Heine and analyting
1. Which is bigger: $\frac{3}{4}$ or $\frac{4}{5}$?	11. Expand: x(x - 1)	21. 21. Work out the area of a parallelogram of base 7cm and height 3cm.
2. Which is bigger: 0.3 or $\frac{1}{3}$?	12. Factorise: 8x + 12	
3. Increase £60 by 10%	13. Solve: 2(x – 1) = 10	22. Three of the angles of a quadrilateral
4. Decrease £40 by 10%	14. Solve: 3x + 17 = 2x + 14	are 148°, 104° and 36°. What is the size of the 4 th angle?
5. Write 4 : 2 in form 1: n	15. Find the 10th term 3 7 11 15 19	 Work out the area of a triangle of base 9cm and height 4cm.
6. 10 pens cost £6.50 Find the cost of 4pens	16. If T(n) = 2n + 3, what is the 3 rd term?	
7. Estimate: 355 x 21	17. If $y=2x - 3$, find the value of y when $x = 2$	24. If the probability of rain is 0.03, what is the probability of NO rain?
8. If 62 x 38 = 2356 What is 6.2 x 3.8	 If y=2x - 3, find the value of y when x = -2 	
9. Work out: $\frac{4}{5} - \frac{1}{2}$	$\frac{Use \pi = 3}{19}$ 19. Calculate the area of a circle with radius of 4cm	25. Work out the volume of a cuboid 6cm by 4cm by 2.5cm?
10. Work out: $\frac{3}{5}$ of 7	$Use \pi = 3$ 20. Calculate the length of the circumference of a circle with diameter of 7cm	
Total (A)	Total (B)	Total (C)
Test Total (A+B+C)	R (0-9)	Y (10-19) G (20-25)