Class:

Order	Unit	Links	Pre-requisite skills
1	Integers, powers \& roots		
2	Lines, angles \& shape		Using powers, listing factors, understanding product / sum.

Homework 1 Due

Homework 2 Due

Homework 3 Due

Overview	Learning Objective	
Topic: Integers, Powers and Roots Big Questions - Which has the greatest value $\left(2^{3}\right)^{4}$ or $\left(2^{4}\right)^{3}$? - List all the factors of $m^{2} n^{2} p$ - Who might use standard form in their jobs? - What's the same and what's different about 3×10^{6} and 3×10 62	- Calculate HCF and LCM of pairs of numbers. - Know that anything to the power of 0 is 1 . - Know and use the index laws for multiplication and division of positive integer indices.	-Convert from ordinary to standard form. Both positive \& negative powers. - Convert from Standard form to ordinary numbers. - Know that ($a b$) $c=a b c$
Topic: Lines, angles and shapes Big Questions - A square and a regular hexagon tessellate with another regular shape. How many sides does this shape have? - Why do exterior angles always add up to 360° ? - What is the correct name for an F angle?	- Use angle facts to solve problems involving triangles. - Use angle facts to solve quadrilateral problems. - Circle definitions. - Calculate interior and exterior angles of a regular polygon. - Solve problems involving corresponding, alternate and supplementary angles.	- Recognise tangents, arcs, sectors and segments of circles.
Topic: Simplifying and substituting Big Questions - What's the same/different $6 y+3 y$ and $3(2 y+y)$ and $9 y$ - List all the factors of 24 / 13 / 60 - Show that $a^{2} b^{2}-16 x^{4}$ is the difference of to squares.	- Substitute numbers into an expression. - Substitute numbers into a formula and more complicated formula. - Substitute numbers into more complicated formula. - Expand single brackets.	-Expand and simplify. - Expand quadratics. - Interpret basic functions. (f(5)) - Factorise single brackets.

Integers
"Integer" is just a posh word for whole number.
The thing to remember is that integers can be positive or neg Shared by two or more things.
So: $1,7,298,-3,0$ and -49 are all integers, but 2.5 is not and neither is $3 \frac{5}{8}$!
Multiples
The Multiples of a number are all the numbers in your number's times table.
Don't forget: you must count the number itself!
e.g. Some multiples of 7 are: $7,14,21,28$... but there are loads more, like 700 and 4445
Factors
The Factors of a number are all integers that divide into your number exactly (there must not be a remainder!)
Don't forget: 1 is a factor of all numbers, and so is the number itself!
e.g. The factors of 12 are: $1,2,3,4,6$ and 12

Term 1 HW: 1

Section A:Number	Section B: Algebra Geometry \& measures	Section C: Using and applying	
1. Which is bigger: $\frac{3}{7}$ or $\frac{2}{5}$?	11. Expand: $3(x+5)$	21. Work out the area of a parallelogram of base 6 cm and height 8 cm .	
2. Which is bigger: 0.45 or $\frac{2}{5}$?	12. Factorise: $3 \mathrm{x}+9$		
3. Increase $£ 30$ by 15%	13. Solve: $2(x-5)=7$	22. Three of the angles of a quadrilateral	
4. Decrease $£ 40$ by 15%	14. Solve: $3 x+1=2 x+10$	What is the size of the $4^{\text {th }}$ angle?	
5. Write $4: 8 \mathrm{in}$ form 1: n	15. Find the 10th term \qquad	23. Work out the area of a triangle of base 6 cm and height 8 cm .	
6. 10 pens cost $£ 2.50$ Find the cost of 7pens	16. If $T(n)=3 n-1$, what is the $3^{\text {rd }}$ term?		
7. Estimate: 32×43	17. If $y=3 x+2$, find the value of y when $\mathrm{x}=-2$	24. If the probability of rain is 0.87 , what is the probability of NO rain?	
8. If $36 \times 47=1692$ What is 3.6×47 ?	18. If $y=-3 x-2$, find the value of y when $x=2$		
9. Add: $\frac{1}{3}$ and $\frac{1}{4}$	Use $\pi=3$ 19. Calculate the area of a circle with radius of 5 cm	25. Work out the volume of a cuboid 5 cm by 3 cm by 6 cm ?	
10. Work out: $\frac{2}{5}$ of 8	Use $\pi=3$ 20. Calculate the length of the circumference of a circle with diameter of 6 cm		
Total (A)	Total (B)	Total (C)	
Test Total ($\mathrm{A}+\mathrm{B}+\mathrm{C}$)	R (0-9)	-19) G (20-25	

FACTORISING	
FACTORISING means find highest common factors, (numbers. letters or both), in all terms and put back into brackets.	
How to Factorise a Simgle Ericket	How to Factorse a Quadratic Equation
$14 \mathrm{y}^{2}+21 \mathrm{y}$	A) How to factorise when the
Find the highest common factor of 14 and 21	coefficient of X^{2} is
- 7 is the highest common factor	$\mathrm{x}^{\mathbf{2}}+8 \mathrm{x}+15$
- y is the common factor letter	- Find the factors of 15 which sum to 8.
- Factorise... $14 y^{2}+7 y$ and $21 y+7 y$	$\text { - Factors of } 15 \text { are: }$ $\text { - } 1,15,3,5$
$7 \mathrm{y}(2 \mathrm{y}+3)$	- Only 3 and 5 sum to 8 and multiply to give 15
	$\begin{aligned} & 3+5=8 \\ & 3 \times 5=15 \end{aligned}$
	$(\mathrm{x}+3)(\mathrm{x}+5)$
Difference of Squares	
$\begin{array}{cc} 4 a^{4}-9 b^{4} & \left.\sqrt{25\left(v^{4}\right)}-\sqrt{16\left(u^{4}\right.}\right) \\ \sqrt{4\left(a^{4}\right)}-\sqrt{9\left(b^{4}\right)} & 5 v^{\frac{4}{2}}-4 u^{\frac{4}{2}} \\ 2 a^{\frac{4}{2}}-3 b^{\frac{4}{2}} & \left(5 v^{2}+4 u^{2}\right)\left(5 v^{2}-4 u^{2}\right) \\ \left(2 a^{2}+3 b^{2}\right)\left(2 a^{2}-3 b^{2}\right) \end{array}$	

Function $f(x)$ or $x: \rightarrow$ or $y=$ $f(x)=x^{2}$	A function is a special relationship where each input has a single output. It is often written as " $f(x)^{\prime \prime}$ where x is the input value.

 ¿SIH $\perp ~ \exists \perp I 甘 M ~ \exists M$ OากOHS MOH 4 more than $p \quad=p+4$ 6 less than 9 6 less thang
$y \times y \times y$
$y+y+y+y$

Consider the family mcal below.
We need to group the same items together, so when
we order through the drive-through its simple.

- 110 seev 1 mm シ

 $3 b+f+5 c+3 b+s+2 f+m+2 m+m f+c+s+2 b$ This would be a mouthful to say into the microphone This would be a mouthful to say into the microphone
when ordering - so lets group all the same items
together. together.

$s+s-2$ salads
$5 c+c=6$ cokes
$f+2 f-3$ fries $\begin{aligned} & \begin{array}{l}\text { Sc+c }=6 \text { cokes } \\ f+2 f-3 \text { fries } \\ m+2 m-3 \text { milkshakes } \\ 1 \text { Mcflurry }\end{array} \\ & \quad 8 b+2 s+6 c+3 f+3 m+m f\end{aligned}$
Key Facts - Multiphying
If the coafficient is 1
we don't write it. $f w+w \varepsilon+t \varepsilon+59+s 2+q 8$

Identity: An equation that is true for all values
Formula: An identity seen as a general rule. An expression for which inputs

aues әył skeł̧ quez̧uoo

${ }^{\prime} \mathrm{z}_{\mathrm{a}}$. 10

Term 1 HW: 3
Knowledge Recall
Date Due
Score to beat

