## Year 10 Maths Higher Knowledge Booklet Term 1

Name:

## Class:

| Order | Unit | Links | Pre-requisite skills |
| :---: | :---: | :---: | :---: |
| 1 | Integers, powers \& roots |  |  |
| 2 | Lines, angles \& shape |  |  |
| 3 | Simplifying \& substituting | Unit 1 | Using powers, listing factors, understanding product / sum. |
| 4 | Area and perimeter | Unit 2 | Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions. |
| 5 | Calculations \& Accuracy | Unit 1 | Understanding numbers. |
| 6 | Construction and LOCI | Unit 2 | Measuring angles for bearings, parallel line angle facts. |
| 7 | FDP | Unit 1 | Using powers, understanding lowest common multiples. |
| 8 | Sequences, functions and graphs | Unit 3/5 | Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives. |
| 9 | Ratio \& Proportion | Unit 1/7 | Decimals/powers as multipliers, calculating/understanding fractions as parts. |
| 10 | Transformations | Unit 2/8 | Identifying 90/180/270 degrees, plotting mirror lines of basic functions. |
| 11 | Pythagoras and Trigonometry | Unit 1/2/3/4/5 | Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers. |
| 12 | Forming and solving | Unit 3/4 | Properties of 2d shapes, angle facts including polygons \& parallel lines, algebraic notation and simplifying, forming expressions. |
| 13 | Measures | Unit 1/7 | Calculating, multiplying decimals and powers of 10 for metric conversions. |
| 14 | Volume and Surface area | Unit 4/5/13 | Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry. |
| 15 | Probability | Unit 1/7 | Types of numbers, calculating with fractions \& decimals. |
| 16 | Inequalities | Unit 12/8/5/7 | Solving equations, rounding, plotting graphs for regions, calculating with fractions. |
| 17 | Statistics | Unit 1/6/9/16 | Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data. |

## Homework 1 Due

## Homework 2 Due

## Homework 3 Due



| Overview | Learning Objective |  |  |
| :---: | :---: | :---: | :---: |
| Topic: Integers, Powers and Roots <br> Big Questions <br> Convince me that $\sqrt{ } 72$ $=6 \sqrt{ } 2$ <br> - What do I need to multiply $(4+\sqrt{ })$ by to give $11+6 \sqrt{ } 3$ as a simplified answer? | - Calculate with standard index form. Multiplication. <br> - calculate with standard form. Division. <br> - Calculate with standard form. Addition. <br> -Calculate in standard form. Substraction. <br> - Use index notation for negative integer indices <br> - Know that $n^{1 / 2}=\sqrt{ } n$ and $n^{1 / 3}=\sqrt[3]{ }$ n for any positive number n . <br> - Use index notation and index laws for simple fractional powers such as $163 / 4$ | - Use index notation involving fractional negative powers. <br> - - Know that $n^{1 / 2}=\sqrt{ } n$ and $n^{1 / 3}=\sqrt[3]{ }$ n for any positive number $n$. <br> - Use index notation and index laws for simple fractional powers such as $16^{3 / 4}$. <br> - Simplify surds to the form avb -multiplying surds | - Use index notation involving fractional negative powers. <br> - Rationalise a denominator in the form $a \sqrt{ } b, a+\sqrt{ } b$ and $a+b \sqrt{c}$. <br> - Construct an algebraic proof of number properties. <br> Simplify surds, such as $4(3$ $+\sqrt{ } 3)$ and $(2-\sqrt{ } 3)(4+\sqrt{ } 3)$ in the form $a+b \sqrt{ } 3$ <br> - Rationalise the denominator of a surd such as $2 / \sqrt{ } 5$. |
| Topic: Lines, angles and shapes <br> Big Questions <br> - Show me a problem with a right-angle in a semi-circle. <br> - Show me a problem where two angles are subtended by the same arc. <br> - Show me a problem involving a cyclic quadrilateral. | - Use the tangent/radius properties of a circle. <br> - Apply circle theorems. <br> - Prove circle theorems. |  |  |
| Topic: Simplifying and substituting <br> Big Questions <br> - Can you have a negative square root? - Expand $(a+b)^{3}$ | - Expand products of more than two binomials. <br> - Recognise and factorise the difference of two squares. | - Factorise quadratics in the form $a x^{2}+b x+c=0$ where $a=1$. <br> - Factorise quadratics in the form $a x^{2}+b x+c=0$ where $a>1$. | - Simplify algebraic fractions that involve factorising. <br> - Interpret the succession of two functions as a 'composite function'. <br> - Interpret the reverse process as the 'inverse function'. |


The thing
The thing to remember is that integers can be positive or negative
So: $1,7,298,-3,0$ and -49 are all integers, but 2.5 is not and neither is $3 \frac{5}{8}$ !
Multiples
The Multiples of a number are all the numbers in your number's times table.
Don't forget: you must count the number itself!
factors
The Factors of a number are all integers that divide into your number exactly (there must not be a remainder!) Don't forget: 1 is a factor of all numbers, and so is the number itself!

| Prime Number | A positive integer greater than 1 that can only | 7,23 , and 67 are examples. |
| :--- | :--- | :--- |

Prime Number
remainder.
The big number on the left; the number that
will be multiplied by itself.
The small number on the top-right; the
number of times a value is multiplied by itsef.
Another word for index.
Plural of index
The reciprocal of a number is one divided by
Prime Factor Tree

| In index form, $4 \times 4 \times 4$ is $4^{1}$ |
| :--- |
| $7^{3}$ expands to give $7 \times 7 \times 7$ |
|  |
| 1 would $2^{5}$ to get 32 |
| $2^{3} \times 2^{5}$ simplifies to $2^{6}$ |


Knowledge Recall
Terml HW: 1

Knowledge Recall
Terml HW: 2


$09-x \varepsilon 乙-{ }^{x} \times 乙-\varepsilon^{x}=(t+x)(g-x)(\varepsilon+x)$

'uo os pue uosko
 Equation: Expressions that equal one another (Solved) (An inequality is a special $\ddagger$ equation) $\frac{\text { Identity: }}{\text { (Show) }}$ An equation that is true for all values Formula: An identity seen as a general rule.

An expression for which inputs An expression for which inpuls
are used to generate outputs
from inputs.


${ }_{\mathrm{n}} \mathrm{z}_{\mathrm{u}} 10$






[^0]
## Knowledge Recall

## :12aq 01 2.003S

Terml HW: 3



[^0]:    SUBSTITUTION
    SUBSTITUTION means putting numbers where the letters are.

