
Year 10 Maths Higher Knowledge Booklet Term 1

Name:

Class:

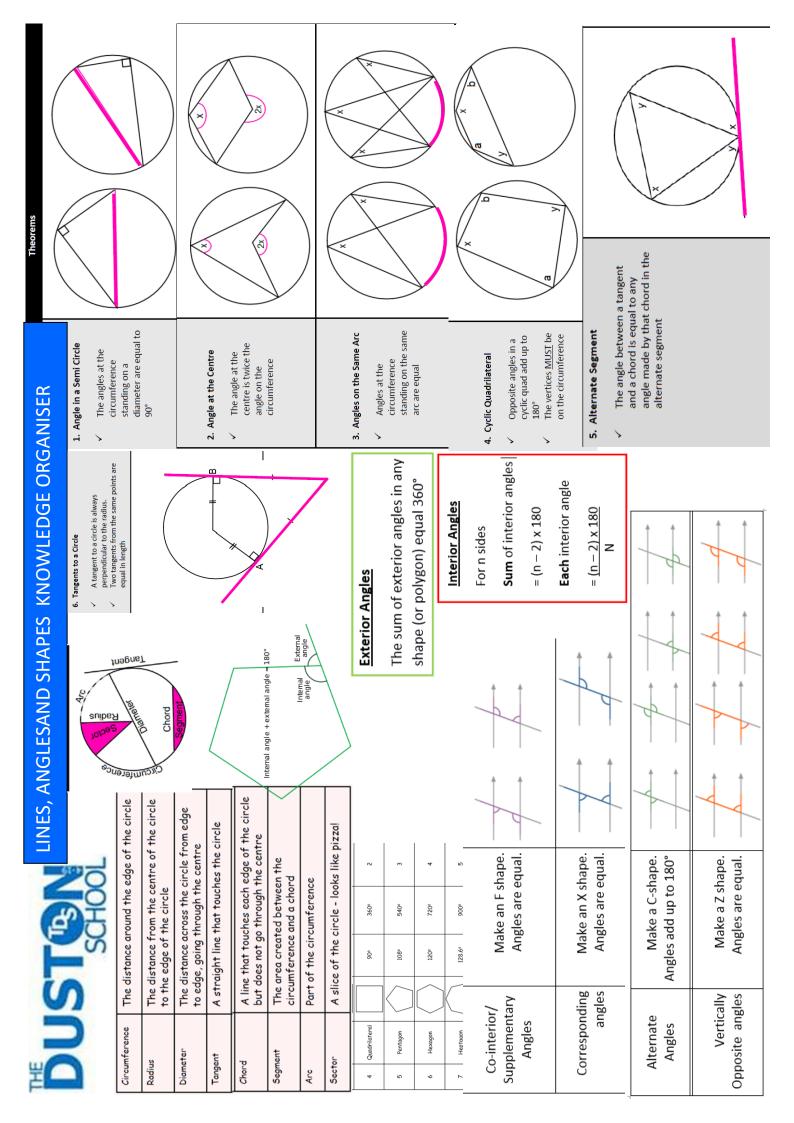
Order	Unit	Links	Pre-requisite skills
1	Integers, powers & roots		
2	Lines, angles & shape		
3	Simplifying & substituting	Unit 1	Using powers, listing factors, understanding product / sum.
4	Area and perimeter	Unit 2	Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions.
5	Calculations & Accuracy	Unit 1	Understanding numbers.
6	Construction and LOCI	Unit 2	Measuring angles for bearings, parallel line angle facts.
7	FDP	Unit 1	Using powers, understanding lowest common multiples.
8	Sequences, functions and graphs	Unit 3/5	Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives.
9	Ratio & Proportion	Unit 1/7	Decimals/powers as multipliers, calculating/understanding fractions as parts.
10	Transformations	Unit 2/8	Identifying 90/180/270 degrees, plotting mirror lines of basic functions.
11	Pythagoras and Trigonometry	Unit 1/2/3/4/5	Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers.
12	Forming and solving	Unit 3/4	Properties of 2d shapes, angle facts including polygons & parallel lines, algebraic notation and simplifying, forming expressions.
13	Measures	Unit 1/7	Calculating, multiplying decimals and powers of 10 for metric conversions.
14	Volume and Surface area	Unit 4/5/13	Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry.
15	Probability	Unit 1/7	Types of numbers, calculating with fractions & decimals.
16	Inequalities	Unit 12/8/5/7	Solving equations, rounding, plotting graphs for regions, calculating with fractions.
17	Statistics	Unit 1/6/9/16	Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data.

Homework 1 Due	
Homework 2 Due	
Homework 3 Due	

<u>Overview</u>	Learning Objective		
Topic: Integers, Powers and Roots	- Calculate with stand- ard index form. Multiplication.	- Use index notation involving fractional negative powers.	- Use index notation involving fractional negative powers.
Big Questions Convince me that $\sqrt{72}$ = $6\sqrt{2}$ - What do I need to multiply (4 + $$) by to give 11 + $6\sqrt{3}$ as a simplified answer?	 calculate with standard form. Division. Calculate with standard form. Addition. Calculate in standard form. Addition. Calculate in standard form. Substraction. Use index notation for negative integer indices Know that n^{1/2} = √n and n^{1/3} = ³√n for any positive number n. Use index notation and index laws for simple fractional powers such as 16^{3/4} 	 - Know that n^{1/2} = √n and n^{1/3} = ³√n for any positive number n. - Use index notation and index laws for simple fractional powers such as 16^{3/4}. - Simplify surds to the form a√b -multiplying surds 	- Rationalise a denominator in the form $a\sqrt{b}$, $a + \sqrt{b}$ and $a + b\sqrt{c}$. - Construct an algebraic proof of number properties. Simplify surds, such as 4(3 $+\sqrt{3}$) and $(2 - \sqrt{3})(4 + \sqrt{3})$ in the form $a + b\sqrt{3}$ - Rationalise the denominator of a surd such as $2/\sqrt{5}$.
<u>Topic: Lines, angles and</u> <u>shapes</u>	- Use the tangent/radius properties of a circle. - Apply circle theorems.		
Big Questions	- Prove circle theorems.		
- Show me a problem with a right-angle in a semi-circle.			
- Show me a problem where two angles are subtended by the same arc.			
- Show me a problem involving a cyclic quadrilateral.			
Topic: Simplifying and substituting	- Expand products of more than two binomials.	- Factorise quadratics in the form $ax^2 + bx + c = 0$ where $a = 1$.	- Simplify algebraic fractions that involve factorising.
<u>Big Questions</u> - Can you have a negative square root? - Expand (a + b) ³	- Recognise and factorise the difference of two squares.	- Factorise quadratics in the form ax ² + bx + c = 0 where a > 1.	 Interpret the succession of two functions as a 'composite function'. Interpret the reverse process as the 'inverse function'.

20
E B
5
5
H

INTEGERS, POWERS & ROOTS KNOWLEDGE ORGANISER


$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C			IN IEGERS, POWE		ERS & RUUIS KINUWLEDGE URGAINISER		
A positive integer greater than 1 that can only7, 33, and 67 are examples.is envioled.The big number on the left, the number that1 is not a prime number.iremainder.The big number on the left, the number of times a value is multiplied by itself.3 is the index in 5 ³ in the multiplied by itself.3 to the power of 2 = 3 ² Another word for index.3 to the power of 2 = 3 ² Plural of index.3 to the power of 2 = 3 ² The reciprocal of a number of times a value is multiplied by itself.3 to the power of 2 = 3 ² Plural of index.The reciprocal of a number of number of times a value is multiplied by itself.3 to the power of 2 = 3 ² Plural of index.The reciprocal of a number of number number of number number of number of number number number number numb					egers	· · · ·		
The big number on the left; the number that5 is the base in 53Number of times and number on the top-right; the number of times and number in autiplied by itself.3 is the index in 53In the small number of times a value is multiplied by itself.3 is the index in 53In the small number of times a value is multiplied by number of times.3 to the power of 2 = 32In the reciprocal of a number is one divided byThe reciprocal of 41s $\frac{1}{4}$, which is equal to 0.25Inter correct of a number is one divided byThe reciprocal of 41s $\frac{1}{4}$, which is equal to 0.25Inter number1: Identify the squares and their roots at either side.It at number3: Identify the squares and their roots at either side.It at number2: Place the squares and their roots at either side.It at number3: Identify the square on either side.It at number3: Identify the square on either side.It at number3: Identify the square on the line.3: Identify the square so on the line.3: Identify the square solution.It at a number3: Identify	Prime Number		ger greater than 1 that can only itself and 1 without leaving a		teger" is just a posh a thing to remember 1, 7, 298, -3, 0 and litiples	word for <u>whole number</u> . is that integers can be positive or nec -49 are all integers, but 2.5 is not and	gative d neither is 3 [§] !	
The small number on the top-right, the number of times a value is multiplied by itself.3 is the index in 53 3 to the power of 2 = 32 entofAnother word for index3 to the power of 2 = 32 which is equal to 0.25sPlural of findexThe reciprocal of a number is one divided bytentThe reciprocal of a number is one divided byThe reciprocal of 4 is $\frac{1}{4}$, which is equal to 0.25to1: Identify the squares and their roots at eitThe reciprocal of a number is orealtate a2: Place the squares and their roots at eit 2^{14} , 2^{14} and 2^{16} an	Base	The big numbe will be multipli	er on the <u>left;</u> the number that ied by itself.		e Multiples of a numb <u>n't forget:</u> you must c	ver are all the numbers in <u>your numbe</u> r count the number itself!	<u>r's times table.</u>	
Another word for index.3 to the power of 2 = 3²Plural of indexThe reciprocal of a number is one divided byThe reciprocal of 4 is $\frac{1}{4}$ Plural of indexThe reciprocal of a number is one divided byThe reciprocal of 4 is $\frac{1}{4}$ The numberThe reciprocal of a number is one divided byThe reciprocal of 4 is $\frac{1}{4}$ The reciprocal of a numberThe reciprocal of a number is one divided byThe reciprocal of 4 is $\frac{1}{4}$ The numberThe reciprocal of a numberThe reciprocal of a last $\frac{1}{4}$ The numberThe squares and their roots at eitThe Factor Tree2. Place the squares and the ir nots at eitThe Factor Tree2. Place the squares on either side.The factor Tree2. Square your numberThe factor Tree3. Identify the halfway point.The reciprocal of a blank line.4. Place your numberThe factor Tree3. Identify the halfway point.The square position.5. Estimate its position.State the square position.6. Square your answer to check.The state the square position. $x^2 + x^2 = x^2 + x^$	Index	The small num number of tim	hber on the top-right; the les a value is multiplied by itself.		. Some multiples of i stors	7 are: 7, 14, 21, 28 but there are loa	ads more, like 700 ar	nd 4445
Puriod fricksPuriod frickNumber is one divided by The reciprocal of 413.In index form writes in storage forms, without indicesTo complete form writes in storage formTo complete	Power of exponent	Another word	for index.	32	: Factors of a number († forget: 1 is a facto	r are all integers that <u>divide into your</u> or of all numbers, and so is the numbe	r number exactly (th er itself!	nere must not be a remainde
The reciprocal of a number is one divided by that numberThe reciprocal of a 1s, 1/2 that numberIn index formWritten is a longer form. written is a longer form. written is a longer form.In index formIn index formIn index form14 number14 number14 number14 number14 number14 number12 number12 number12 number12 number1 clearly the number2 s place the squares and their roots at at 3 sterrify the infravery point. 5 standard form2 number2	Indices	Plural of index		6 .9	. The tactors of 12 o	ire: 1, 2, 3, 4, 6 and 12		
the numberthe numberMich is equal to 0.25ExpandWrite in a longer form, without indices 7×2^{-3} group111<	Reciprocal	The reciprocal	of a number is one divided by		n index form	Written using powers	-	n index form, 4x4x4 is 41
within is equal to 0.05Evaluate SimplifyFind the simplest, nearest formVolte in the simplest, nearest formNote in the simplest, nearest formVolte in the simplest, nearest formNote in the simplest, nearest formVolte in the simplest, nearest formVolte in the simplest, nearest formNote in the simplest, nearest formVolte in the simplest, nearest formNote in the simplest, nearest formVolte in the simplest, nearest formNote in the simplest, nearest formNot		that number			xpand	Write in a longer form, without		¹³ expands to give 7x7x7
I (dentify the squares on either side.Standard form $x x = x + x + x + x + x + x + x + x + x $					valuate	Find the value; work out		would 2 ⁵ to get 32
$\begin{aligned} \begin{array}{c} \text{Prime factor tree} \\ Prime factor tree factor tre$	Steps to	1: Identify the	souare on either side.		Amplity	write in the simplest, heatest it		. X 7. Simplifies to 7.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	estimate a	2: Place the sq	uares and their roots at eit	Prime Factor Tree				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	square root	end of a blank	c line. Halfway noint	216	A number in stand		×	o
6: Square your answer to check.5: x + 10 ¹⁶ 5: x + 10 ¹⁶ 1.RuleExamplex + x5 ¹² 5 ¹² 3: x + 10 ¹⁶ 5: x + 10 ¹⁶ 0.0006 $= x + 10^{16}$ 1.x + x = x5 ¹² 5 ² 15 ² 1100000.0006 $= x + 10^{16}$ 1.x + x = x5 ² 15 ² 1100000.0006 $= x + 10^{16}$ 1.x + x = xx = x2 ² 22.33332.13<		4: Place your n 5. Estimata ite	number on the line.	72 (3)	Going from stand		: 10 ¹⁵ and 1.5 × 10	1
RuleExample 24 3 $7.1 \times 10^{\text{B}}$ 7.10^{B} 7.10^{B} 1.10^{B} $1.2 \times 10^{\text{B}}$ $1.1 \times 10^{$		6: Square your	r answer to check.) / /		0.0006 =	6 × 10 ⁻⁴	[
RuleExampleExampleNoticities the power: positive the number will get bigger, if negative the number will be smaller.2 $x^{1} = x$ $5^{1} = 5$ $5^{1} = 5$ 8 3^{1} Hint: Circle the numbersNoticityring Standard form $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 1$ $2^{1} = 2^{1} \times x^{3} = x^{13} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{1} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2} = x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2}$ $3^{1} = x^{2} \times x^{2} = x^{2} \times x^{2}$ $x^{1} = x^{1} \times x^{1} = x^{1} \times x^{1} \times x^{2} = x^{2} \times x^{2} =$				24 (3)	$7.1 \times 10^6 =$	1	7.2 × 10 ⁻⁷	1. $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$
$ \begin{aligned} x^{1\pm}x & 5^{1}=5 \\ x^{0}=1 \\ x$	Rul	е	Example			L and have been a finance of another second s	Icms of Ilius odding odd	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		x	$5^1 = 5$	(m)		i. positive the mumber will get bigger, in hegane	cue number win de sinai Standard Form	'
$x^{0} = 1$ $5^{-} = 1$ $5^{-} = 1$ $5^{-} = 1$ $5^{-} = 1$ $5^{-} = 1$ $5^{-} = 1$ $5^{-} = 1$ $3^{-} = 2$ $3^{-} = 2$ $3^{-} = 2$ $3^{-} = 2$ $3^{-} = 2$ $3^{-} = 2^{-} = $	-	,		prime numbe		5		
$\begin{aligned} x^n \times x^m &= x^{n+m} x^2 \times x^3 = x^{2/3} = x^5 \\ x^n &= x^{n+m} x^n \times x^n = x^{n+3} = x^5 \\ x^n &= x^{n+m} x^n \times x^n = x^{n+3} = x^5 \\ x^n &= x^{n+m} x^n = x^{n+m} x^n = x^{n+m} \\ x^n &= x^{n+m} x^n = x^{n+m} x^n = x^{n+m} \\ x^n &= x^{n+m} x^n = x^{n+m} x^n = x^{n+m} \\ x^n &= x^{n+m} x^n = x^{n+m} x^n = x^{n+m} \\ x^n &= x^{n+m} x^n = x^{n+m} x^{n+m} = x^{n+m} \\ x^n &= x^{n+m} x^n = x^{n+m} x^{n+m} = x^{n+m} \\ x^n &= x^{n+m} x^{n+m} = x^{n+m} x^{n+m} = x^{n+m} \\ x^n &= x^n \times y^n \\ x^n$	*	= 1	-	5	$(2 \times 10^6) \times (4 \times 10^6)$		$\frac{10^{m}}{10^{m}} = \frac{10^{m}}{10^{m}} \times \frac{10^{m}}{10^{m}}$	
$x'' + x''' = x'^{5/2} = x^3$ $x^5 + x^2 = x^{5/2} = x^3$ $= 4 \times 10^{13.7}$ $= 4 \times 10^{13.7}$ $(x'')''' = x'''x''$ $(x^3)^2 = x^{5/2} = x^3$ $= 23 \times 3^3$ Rep 1: Take the numbers in Standard Form back to an ordinary number. $= 4 \times 10^{13.7}$ $(x'')''' = x'''x''$ $(x^3)^2 = x^{3/2} = x^6$ $(x^3)^2 = x^{3/2} = x^6$ $xep 2: Add or subtract the numbers is Standard Form= 4 \times 10^{13.7}(x'')''' = x'''xy'' = x'''x''(x'')'' = x'''x''(x'')' = x'''x''xep 2: Add or subtract the numbers is standard Form= 4 \times 10^{13.7}(x'')'' = x'''xy'' = x'''x''(x'') = x'''x'' = x'''x''(x'') = x'''x'' = x'''' = x''''' = x''''''''$	\boldsymbol{x}^n	\mathbf{x}	$\mathbf{x} \ \mathbf{x}^3 = \mathbf{x}^{2+3} = \mathbf{x}^5$			$= 8 \times 10^{6+4}$	0^7) = (8 ÷ 2)×(10^{13} ÷	3
	u x	= _w x	$x^2 = x^{5/2} = x^3$		Adding and Subtr Step 1: Take the r	acting Standard Form numbers in Standard Form back to an ordinary n	$=4 \times 10^{13-7}$ number.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$m \mathbf{x}^{n} \mathbf{x}^{m}$	$(x^3)^2 = x^{3 \times 2} = x^6$		Step 2: Add or sul		ack into Standard Form	
$\frac{(x+y)^n = x^n/y^n}{x^n = 1/x^n} \frac{(x+y)^3 = x^3/y^3}{x^2 = 1/x^2}$ $\frac{\text{Remember}}{x^n = 1/x^n} \frac{\text{Remember}}{x^{2} = 1/x^2}$ $a^2 + a^2 = 2a^2 \underline{\text{BUT}} a^2 \times a^2 = a^4$ $\frac{\text{Mutis the lengest square tracts of 722}}{x^{2} = 6/2} \frac{1}{x^2} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} \times$		$\boldsymbol{y})^n = \boldsymbol{x}^n \times \boldsymbol{y}^n$	$(x \times y)^3 = x^3 \times y^3$		Simulif	, [72 - [36 v [2	Rationalise the der	<mark>nominator</mark> This is the same as
$x^n = 1/x^n$ $x^2 = 1/x^2$ $a^2 + a^2 = 2a^2$ BUT $a^2 x a^2 = a^4$ What is the larget square to the larget to the larget to the larget to the larget to the la		$\boldsymbol{y})^n = \boldsymbol{x}^n / \boldsymbol{y}^n$	$(x+y)^3 = x^3/y^3$	Remember				yd griylo 1
$\frac{x^{1/n}}{x^{m/n}} = \frac{\sqrt{5}}{\sqrt{5}} x^{1/2} = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{(5 \times 5)}} = \frac{\sqrt{5}}{\sqrt{(5 \times 5)}} = \frac{\sqrt{5}}{\sqrt{(5 \times 5)}} = -\frac{\sqrt{5}}{\sqrt{(5 \times 5)}} = -\sqrt{$		= 1 /x ⁿ		BUT a ² x a ² =	What is the largest square		, 5	
$\chi^{m/n} = (\sqrt[n]{x})^m$ $\chi^{2/3} = (\sqrt[3]{x})^2$		$\underline{x}_{u}^{h} = u^{h}$			number that 1 a factor of 72			-= /2 : :
		$m(\underline{x}_{u}) = m$	$x^{2/3} = (\sqrt[3]{x})^2$				(c × c)/	(cz)/

	ź
	Ś
(ď)	5
)
in	
-	
Ľ	

Knowledge Recall

Terml HW: 1

Section A.Number	Date Due.	2001 0 10 0001
	Section B: Algebra Geometry & measures	Section C: Using and applying
1. Write $\frac{3}{11}$ as a recurring decimal	11. Factorise: x ² + 5x + 4	21. <u>Linear-Quadratic-Cubic-Reciprocal</u> Which function is represented by this graph?
2. Write 0. 29 as a fraction	12. Factorise: x ² - 9	
 Work out the balance for £4500 invested for 2 years at 4% per annum 	 Multiply & simplify: (2a + 1)(a + 3) 	22. What inequality is represented here?
	14. Multiply & simplify: $(3x - 2)^2$	•
The value of a car depreciates by 35% per year. Work out the current value of a		4 0
car bought 2 years ago for £20000.		
· incertify -	-	0 1 2 3 4
 In a "20% off" sale, a coat was £220. Work out the original price. 	15. Make r the subject of the formula: $A = \pi r^2$	23. On a spinner: P(3) = ¾ and the p(4) = ½
11		What is the probability of getting 3 or 4
 The cost of a scooter has increased by 20% to £72. Work out the original price. 	16. Make t the subject of the formula: S = at + bt	
	u=-1	24. A courgette seed and a pumpkin
7. Write 84000 in standard form:	v^2 Find S when, v =	seed are planted.
	2a a= 2	P(courgette seed germinates) = %
8. Write 2.4 x 10 ⁻² as an ordinary number	u = 20 18. D= ut + kt ² Find D when t = 1.2	P(pumpkin seed germinates) = 34 What is the probability that BOTH seeds
	k = -5	germinate?
9. Work out (4x10 ⁴) x (2 x 10 ³)	19. If $\tan x = \frac{3}{2}$, find x (3sf)	25. Show on the cumulative frequency graph how to take the median reading
Give your answer in standard form	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
10. Work out (6.3x10 ⁷) ÷ (4.2 x 10 ²)	20. Each of these measures is rounded to	G
	ď	
Total (A)	Total (B)	Total (C)
Test Total (A+B+C)	R (0-9) Y	Y (10-19) G (20-25)

DUST SU	Knowledge Recall	Term1 HW: 2
SUTUR		Score to beat:
3ection A.INUILIOET	section D. Algeora Geometry & measures 11. Factorise: x ² + 7x + 6	21. Linear-Quadratic-Cubic-Reciprocal Which function is represented by this graph?
2. Write 0. 27 as a fraction	12. Factorise: x ² - 36	
 Work out the balance for £3000 invested for 3 years at 5% per annum 	14. Multiply & simplify: (3x + 4)(x + 1)	22. What inequality is represented here?
 The value of a car depreciates by 24% per year. Work out the current value of a car bought 3 years ago for £20000. 	14. Multiply & simplify: (2x + 5) ²	
 In a '20% off' sale, a coat was £68. Work out the original price. 	15. Make r the subject of the formula: $V = \pi r^2 h$	23. On a spinner: P(3) = ½ and the p(4) = ½ What is the probability of getting 3 or 4
 The cost of a scooter has increased by 20% to £144. Work out the original price. 	16. Make b the subject of the formula: $S = ab - bc_{c}$	
7. Write 63000 in standard form:	u = -4 17. S = $u^2 + v^2$ Find S when, v = -2 2a a = 5	24. A courgette seed and a pumpkin seed is planted. P(courgette seed germinates) = %
8. Write 1.6 x 10' ² as an ordinary number	u = 10 18. $D = u_{L} + kt^2$ Find D when $t = 1.4$ k = -3	P(pumpkin seed germinates) = ½ What is the probability that BOTH seeds germinate?
9. Work out (3x10 ⁵) x (2 x 10 ⁴) Give your answer in standard form	19. If $\frac{1}{12} = \frac{7}{12}$, find x (3sf)	25. Show on the cumulative frequency graph how to take the median reading 80 7
10. Work out (6.67x10 ⁸) ÷ (4.6 x 10 ⁻³) Give your answer in standard form	20. Each of these measures is rounded to nearest whole: a = 5cm and b = 3cm Calculate the lower bound of a + b	t t
Total (A)	Total (B)	Total (C)
Test Total (A+B+C)	R (0-9)	Y (10-19) G (20-25)

20	,
S S	
5	
S	
۲	

Expression: A collection of terms. (Simplified)

Equation: Expressions that equal one another. (Solved) (An inequality is a special ≠ equation)

An equation that is true for all values of the variables. An identity seen as a general rule. An expression for which inputs (e) are used to generate outputs from inputs.
<u>utity:</u> A Show) of <u>Mula:</u> A Substitute

Constants are numbers that stand on their own.

They will not have an "x", "y", "z", or any other variable attached to them. They can be small numbers, like "7", or big numbers, like "23 849".

Variables are symbols that stand for numbers that vary. A variable is usually written as a letter, such as "x", "y", or "z".

The difference between constants and variables is that the value of a variable can change, while the value of a constant stays the same.

Key Facts -

SUBSTITUTION SUBSTITUTION means putting numbers where the letters are.

x = 5

SIMPLIFYING AND SUBSTITUTION KNOWLEDGE ORGANISER

Key Facts - Adding and Subtracting

Consider the family meal below.

EXPANDING

We need to group the same items together, so when we order through the drive-through its simple.

	s+ 2b
🚥 🗿 🍈	÷; +
	ju +
💷 🥑 🏔	2m
	+ E
(The left) and the left (The left) and the left) and the left (The left) and the left) and the left (The left) and the left) and the left) and the left) and the left) are set (The left) and the left) are set (The left) are	3b + f + 5c + 3b + s + 2f + m + 2m + mf + c + s+
	+
	8
()) ()) - (m	ŝ
	÷
	36

3b + f + 5c + 3b + s + 2f + m + 2m + mf + c + s + 2b This would be a mouthful to say into the microphone

This would be a mouthful to say into the microphoni when ordering ... so lets group all the same items together.

	If the coefficient is	we don't write it.			8b +2s +6c +3f + 3m + mf
3b + 2b +3b = 8 burgers s + s = 2 salads	5c + c = 6 cokes	f+2f-3 fries	m + 2m = 3 milkshakes	1 McFlurry	8b +2s +6c

iput	where	hor	ett.
A function is a special relationship where each input has a single output.	It is often written as "I(x)" where \boldsymbol{x} is the input value.	A function put inside another tunction e.g. tg(x)	An inverse function goes the other way, e.g. if $f(x) = 2x + 3$ then $f^{-1}(x) = \frac{x-3}{x}$
A fun relation has a	It is o X is th	A fund tunct	An inverse other way, e.g. if $f(x)$ = $f^{-1}(x) = 0$
Function $f(x)$ or $x \to or y = \frac{1}{x^2}$	Aucherman Signa and scorpar	Composite Function	Inverse Function $f^{-1}(x)$

EXPANDING means multiplying all terms together and simplifying. Single brackets a 3 3 3 3 3 3 means:

+12

4

"3 times (a + 4)" Double brackets

= 3a + 12

(a+2)(a+3) = a+3 $\frac{a^2}{+3a}$ +6

ဖ

a² + 5a +

П

"(a + 2) times (a + 3)"

means:

Example of expanding more than two binomials: (x + 3)(x - 5)(x + 4)First two brackets expand to $x^2 + 3x - 5x - 15 = x^2 - 2x - 15$ $(x^2 - 2x - 15)(x + 4)$ We now must multiply everything in the left hand bracket by x and then by 4 $(x^2 - 2x^2 - 15x + 4x^2 - 8x - 60 = x^3 + 2x^2 - 23x - 60$ If you have three binomials times together, you will end up with a cubic expression, 4 will make a quartic expression and so on.

G1-

x x³ -2x² -5x x + 4 x² -60

×2-

FUNCTIONS

3pl x 7c = 21plc v

,X

 $(x + 3)(x - 5)(x + 4) = x^3 - 2x^2 - 23x - 60$

How to Factorise a Single Br 14y² + 21y

Find the highest common factor of 14 and 21

Y is the common factor letter

7 is the highest common factor

FACTORISING

Factorise... 14y² + 7y and 21y + 7y

7y(2y + 3)

How to Factorise a Quadratic Equation

quadratic Equation	B) How to factorise when the coefficient of x ² is >1	2x ² -5x - 12	 Multiply 2 x -12 = -24 	 Find the factors of -24 which sum to give you -5 and multiply to give you -24 3 × -834 	5-=0 3+-8	2x ² -8x +3x -12	 Factorise the first two terms and the last two terms 	2x ² - 8x + 3x - 12 2x(x - 4) + 3(x - 4)	 Use the 'common factor term' of (x - 4) as the first bracket 	 Use what is 'left over' 2x + 3 as the other bracket (2x + 3) (x - 4) 	
now to ractorise a	A) How to factorise when the coefficient of x² is = 1	<pre>x² + 8x + 15 x² + 6x + 15 Find the factors of 15 which sum to 8.</pre>	 Factors of 15 are: 1, 15, 3, 5 	 Only 3 and 5 sum to 8 and multiply to give 15 3 + 5 = 8 	(G + X)(E + X)	(<u>+</u> n)	<u>z</u> n¥ — <u>z</u> a *	2≤ 4)52∕	<u>z</u> q2 _ (<u>+</u> q)6	- [*] <i>n</i> ⁴	o sonsisti C)

Zd
A B
No.
N,
μ

Knowledge Recall

Terml HW: 3

SCHOOL	Date Due:	Score to beat:
Section A:Number	Section B: Algebra Geometry & measures	Section C: Using and applying
$\mathbf{\overline{n}}$ 1. Write $\frac{5}{6}$ as a recurring decimal	11. Factorise: x ² - 6x + 8	 21. Linear-Quadratic-Cubic-Reciprocal Which function is represented by this graph?
2. Write 0. 23 as a fraction	12. Factorise: x ² - 81	
 Work out the balance for £5000 invested for 5 years at 7% per annum 	14. Multiply & simplify: (x - 2)(2x + 1)	22. What inequality is represented here?
4. The value of a car depreciates by 18% per year. Work out the current value of a car bought 4 years ago for £20000.	14. Multiply & simplify: (2x - 7)²	
 In a '20% off' sale, a coat was £120. Work out the original price. 	15. Make u the subject of the formula: $v^2 = u^2 + 2as$	23. On a spinner: P(3) = ⅔ and the p(4) = ⅓ What is the probability of getting 3 or 4
 The cost of a lamp has increased by 30% to £65. Work out the original price. 	16. Make y the subject of the formula: A = xy + yz	
7. Write 0.0028 in standard form:	u = -3 17. $S = \frac{u^2 + v^2}{2a}$ Find S when, $v = -1$ 2a $a = 5$	24. A courgette seed and a pumpkin seed is planted. P(courgette seed germinates) = 1⁄5
8. Write 4.2 x 10 ⁴ as an ordinary number	u = 20 18. D= ut + kt ² Find D when $t = \frac{34}{k}$ k = -5	P(pumpkin seed germinates) = % What is the probability that BOTH seeds germinate?
9. Work out (9x10 ⁷) ÷ (3 x 10 ⁴) Give your answer in standard form	19. If sinx = $\frac{3}{4}$, find x (3sf)	25. Show on the cumulative frequency graph how to take the lower quartile reading
10. Work out (6.2x10 ⁵) x (3.8 x 10 ⁷) Give your answer in standard form	20. Each of these measures is rounded to nearest whole: a = 5cm and b = 3cm Calculate the upper bound of a - b	Ct E0
Total (A)	Total (B)	Total (C)
Test Total (A+B+C)	R (0-9) Y	Y (10-19) G (20-25)