Year 10 Maths Higher Knowledge Booklet Term 4

Name:

Class:

Order	Unit	Links	Pre-requisite skills
1	Integers, powers \& roots		
2	Lines, angles \& shape		
3	Simplifying \& substituting	Unit 1	Using powers, listing factors, understanding product / sum.
4	Area and perimeter	Unit 2	Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions.
5	Calculations \& Accuracy	Unit 1	Understanding numbers.
6	Construction and LOCI	Unit 2	Measuring angles for bearings, parallel line angle facts.
7	FDP	Unit 1	Using powers, understanding lowest common multiples.
8	Sequences, functions and graphs	Unit $3 / 5$	Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives.
9	Ratio \& Proportion	Unit $1 / 7$	Decimals/powers as multipliers, calculating/understanding fractions as parts.
10	Transformations	Unit $2 / 8$	Identifying 90/180/270 degrees, plotting mirror lines of basic functions.
11	Pythagoras and Trigonometry	Unit $1 / 2 / 3 / 4 / 5$	Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers.
12	Forming and solving	Unit $3 / 4$	Properties of 2d shapes, angle facts including polygons \& parallel lines, algebraic notation and simplifying, forming expressions.
13	Measures	Calculating, multiplying decimals and powers of 10 for metric conversions.	
14	Volume and Surface area	Unit $4 / 5 / 13$	Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry.
15	Probability	Unit $1 / 7$	Types of numbers, calculating with fractions \& decimals.
16	Inequalities	Unit $12 / 8 / 5 / 7$	Solving equations, rounding, plotting graphs for regions, calculating with fractions.
17	Statistics	Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data.	
	Uni6		

Homework 1 Due
Homework 2 Due
Homework 3 Due

Year 10-Term 4: Higher

Overview	Learning Objective		
Topic: Ratio and Proportion Big Questions - Two similar shapes have volumes of 5 m and 125 m . The surface area of the smaller shape is $50 \mathrm{~m}^{2}$. What is the surface area of the larger shape? - 3 men take 4 days to complete a job. How long would the same job have taken 2 men?	- Similar shapes area \& volume. - Solve ratio problems involving percentages \& fractions.	- Use direct and inverse proportion graphically. - Calculate direct and inverse proportion algebraically.	
Topic: Transformations Big Questions - Show me an example of one vector which is a scalar multiple of another. - What do you think an enlargement with a scale factor of $-1 / 4$ would look like?	- Describe all four transformations. - Combined transformations. (Rotations which is the same as an enlargement.) - Introduction to vectors. (Add, subtract and multiply vectors)	- Enlarge a shape by a negative scale factor given a centre. - Describe the changes and invariance achieved by combinations of rotations, reflections and transformations.	- Enlarge a shape by a negative fractional scale factor. - Vectors. - Understand the relationship between parallel vectors. - Vector proofs.
Topic: Pythagoras and Trigonometry Big Questions - Show me a question which can be solved using: - the sine rule. - the cosine rule. $-1 / 2 a b \sin C$ - How does the mnemonic - SOHCAHTOA help you remember equations?	- Use Pythagoras Theorem to calculate the length of the hypotenuse fo a right angles triangle. - Use Pythagoras Theorem to calculate the length of any side of a right angled triangle. - Use Pythagoras Theorem to calculate the height of an isosceles triangle. - Use Pythagoras Theorem in practical problems -Find the distance between two coordinates.	- Know the exact values of sine, cosine and tangent at key angles ($0,30,45,60$, 90 degrees). - SOHCAHTOA to calculate missing sides in rightangled triangles. - sOHCAHTOA to calculate missing angles in rightangled triangles. - Use SOHCAHTOA in practical problems. - Use the formula for area of a non-right-angled triangle.	- Use the sine rule to find missing sides and angles in non-right-angled triangles. - Use the cosine rule to find missing sides and angles in non-right-angled triangles. -Use Sine \& Cosine combined in non-right angled triangles. - Sketch the graphs of: $\begin{aligned} & -y=\sin x \\ & -y=\cos x \\ & -y=\tan x \end{aligned}$ - Use Pythagoras' Theorem in 3D. -Use 3D trigonometry.

0
 Curriculum Flowchart - Similarity

A ball falls vertically after being dropped.
The ball falls a distance d metres in a time of t seconds. d is directly proportional to the square of t.
The ball falls 20 metres in a time of 2 seconds.
(a) Find a formula for d in terms of t $d \alpha t^{2}$
$d=k t^{2}$
$20=k 2^{2}$
$20=k 4$
$5=k$
$D=5 t^{2}$
(b) Calculate the distance the ball falls in 3 seconds.

 Solve
equations
Substitution
$\begin{gathered}\text { Direct } \\ \text { proportion } \\ \text { Write a } \\ \text { statement } \\ \text { and solve } \\ \text { the equation }\end{gathered}$
$\begin{gathered}\text { Indirect } \\ \text { proportion } \\ \text { Write a } \\ \text { statement } \\ \text { and solve } \\ \text { the equation }\end{gathered}$
Represent graphically $y \propto x$
$y=k x$

- Write a statement Write a formula (equation) Find k by substituting Divide both sides by 4 You've worked out k Substitute 3 into equation The exchange rate is $£ 1$ to $\$ 1.70$
need to convert my $£ 56$ into US Dollars.
$£ 56 \times 1.7=\$ 95.20$
$\div 1.70$
 AREA (ASF) VOLUME (VSF) FIND the missing volume (VSF) Statement: Find LSF: $20 / 10=2$
Cube the linear scale factor to find the volume
SF: $2^{3}=8$ SF: $2^{3}=8$

3. Divide $640 \div 8=80 \mathrm{~cm}^{3}$

 420 cm | $\begin{array}{c}\text { directly } \\ \text { proportional to } x\end{array}$ |
| :---: |
| Equation |
| Statement: |
| y y inversely |
| proportional to |
| square of x |$|$

Knowledge Recall
Date Due:
Term4 HW: 1

TRANSLATION

$$
\begin{aligned}
& \text { noved } 2 \text { to the } \\
& \text { pp. } \\
& \text { describing this } \\
& \text { s: } \left.\begin{array}{l}
2 \\
2
\end{array}\right)
\end{aligned}
$$

 Written out in numbers it looks like this: $\binom{4}{2}-\binom{1}{2}=\binom{3}{0}$

$$
\begin{aligned}
& \text { Subtracting vectors } \\
& \text { Subtracting a vector is th }
\end{aligned}
$$

$$
\begin{aligned}
& \binom{a}{b}-\binom{c}{d}=\left(\begin{array}{ll}
a & -c \\
b & -d
\end{array}\right)
\end{aligned}
$$

You could say it is vector $\overrightarrow{X Y}$ followed by a backwards movement along $\overrightarrow{Z Y}$. $\overrightarrow{X Y}-\overrightarrow{Z Y}=\overrightarrow{X Z}$
 along vector $\overrightarrow{X Y}$ followed by $\overrightarrow{Y Z}$. It is also
possible to go directly along $\overrightarrow{X Z}$.
$\overrightarrow{X Z}$ is therefore known as the resultant of $\overrightarrow{X Y}$

$$
\text { If we 'enlarge' a shape by a scale factor that is between }-1 \text { and } 1 \text {, the image will be }
$$ smaller than the object

Negative scale factors An enlargement using a negative scale factor is similar to an enlargement using a positive scale factor, but this time the image is on the other side of the centre of enlargement, and it is upside down.

$$
\begin{aligned}
& \begin{array}{c}
\uparrow N \\
\underset{\sim}{C} \\
\hline
\end{array} \\
& \text { and } \overrightarrow{Y Z} \text {. }
\end{aligned}
$$

