


Year 10 Maths Intermediate Knowledge Booklet Term 4

Name:

Class:

Order	Unit	Links	Pre-requisite skills
1	Integers, powers & roots		
2	Lines, angles & shape		
3	Simplifying & substituting	Unit 1	Using powers, listing factors, understanding product / sum.
4	Area and perimeter	Unit 2	Forming expressions for area/perimeter algebraically through use of brackets, correct notation and simplifying expressions.
5	Calculations & Accuracy	Unit 1	Understanding numbers.
6	Construction and LOCI	Unit 2	Measuring angles for bearings, parallel line angle facts.
7	FDP	Unit 1	Using powers, understanding lowest common multiples.
8	Sequences, functions and graphs	Unit 3/5	Substituting into a function applying BIDMAS to calculate coordinates, factorising for roots of quadratics, understanding powers and all 4 operations with negatives.
9	Ratio & Proportion	Unit 1/7	Decimals/powers as multipliers, calculating/understanding fractions as parts.
10	Transformations	Unit 2/8	Identifying 90/180/270 degrees, plotting mirror lines of basic functions.
11	Pythagoras and Trigonometry	Unit 1/2/3/4/5	Powers/surds, types of triangles, use in area/perimeter problems to find required lengths, rounding answers.
12	Forming and solving	Unit 3/4	Properties of 2d shapes, angle facts including polygons & parallel lines, algebraic notation and simplifying, forming expressions.
13	Measures	Unit 1/7	Calculating, multiplying decimals and powers of 10 for metric conversions.
14	Volume and Surface area	Unit 4/5/13	Area of 2d shapes, rounding/calculating with bounds, conversion of units (length/area/volume), calculating missing sides using pythagoras/ trigonometry.
15	Probability	Unit 1/7	Types of numbers, calculating with fractions & decimals.
16	Inequalities	Unit 12/8/5/7	Solving equations, rounding, plotting graphs for regions, calculating with fractions.
17	Statistics	Unit 1/6/9/16	Using a protractor for pie charts, proportion to calculate angles for a pie chart, use of inequality symbols for recording data.

Homework 1 Due	
Homework 2 Due	
Homework 3 Due	

Year 10 - Term 4: Intermediate

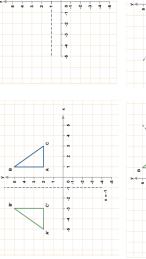
Overview	Learning Objective		
Topic: Ratio and Proportion Big Questions - Ratios related to age and how they change over time: e.g. if Josh and Beth are 1 and 4, £200 will be split in the ratio 1:4 now. What about next year etc. etc.?	 Divide quantities by simple ratios. Write ratios as a fraction. Use ratio to convert between currencies. Use ratio to solve problems about exchange rates. Ratio/fractions/graphs. 	-Similar shapes length. - Similar shapes with area & volume.	-Similar shapes area & vol- ume. - Solve ratio problems in- volving percentages & fractions.
Topic: Transformations Big Questions - True/Never/Sometimes: - Reflected shapes are the same size and shape as the original shape. - Rotated shapes are the same size and shape as the original shape. - Rotated shapes are the same size and shape as the original shape. - Translated shapes are the same size and shape as the original shape. - Translated shapes are the same size and shape as the original shape.	 Enlarge a shape by a positive integer scale factor from a given centre. Enlarge a shape by a positive fractional scale factor given a centre. 	 Describe all four transformations. Combined transformations. (Rotations which is the same as an enlargement.) Introduction to vectors. (Add, subtract and multiply vectors) 	 Enlarge a shape by a negative scale factor given a centre Describe the changes and invariance achieved by combinations of rotations, reflections and transformations.
Topic: Pythagoras andTrigonometryBig Questions- What is the same/ different about three trian- gles with sides 3, 4, 5 and 6, 8, 10 and 5, 12, 13- True/Never/Sometimes:- You can use trigonometry to find the missing length/ angle in triangles- True/Never/Sometimes:- You can use trigonometry to find the missing length/ angle in triangles- True/Never/Sometimes:- Pythagoras's Theorem can be used to find the lengths of sides in triangles	 Use Pythagoras' Theorem to calculate the length of the hypotenuse of a right- angled triangle. Use Pythagoras' Theorem to calculate the length of any side of a right-angled triangle. Use Pythagoras' Theorem to calculate the height of an isosceles triangle. Use Pythagoras' Theorem in practical problems. 	 Find the distance be- tween two coordinates. Know the exact values of sine, cosine and tangent at key angles (0, 30, 45, 60, 90 degrees). SOHCAHTOA to calculate missing sides in right- angled triangles. SOHCAHTOA to calculate missing angles in right- angled triangles. Use SOHCAHTOA in prac- tical problems. 	

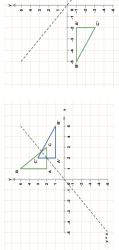
	(ey FactsIf two quantities are in directIf two quantities are in directproportion, as one increases, the otherDirect proportionfactor.	Inverse proportion is when one value increases as the other value decreases.	K is the constant of proportionality	How do I answer the question?	y = kx A ball falls vertically after being dropped. The ball falls a distance d metres in a time of t seconds.	The ball falls 20 metres in a time of 2 seconds.	(a) Find a formula for d in terms of t .	$y = \frac{k}{x}$ Write a statement $d \alpha t^2$	Write a formula (equation) d = kt ²	Find K by substituting : 20 = k2 ² Divide both sides by 4 20 = k4 5 = k	D=5t ²	(b) Calculate the distance the ball falls in 3 seconds. V_{OU} vortion worked out $k = 5$		d = 5 x 9 d = 45
RATIO & PROPORTION KNOWLEDGE ORGANISER	The exchange rate is £1 to \$1.70. I need to convert my £56 into US Dollars. £56 x 1.7 = \$95.20	£1 = \$1.70	÷ 1.70	l	FIND the missing volume Statement: 1. Find LSF: $20/10 = 2$ proportional to x	2. Cube the linear scale factor to find the volume SF: $2^3 = 8$ Fountion $v = kx$		Statement: y inversely $y \propto \frac{1}{x^2}$		Equation $y = \frac{k}{x^2}$		E2:14 E2:14 Solve Direct Indirect What is the price per gram?	$ \begin{array}{c} \hline \hline$	This is less money per gram, so it is the hest buy
RA RA	Curriculum Flowchart - Similarity	Calculate Calculate the linear scale factor and volume	scale factor volume volume How to Calculate Area & Volume using SIMILARITY	AREA (ASF)	FIND the missing area 1. Find LSF: 16/8 = 2	2. Square linear scale factor to find the ASF: $2^2 = 4$	3. Multiply 22 x 4 = 88cm ²			8cm 16cm	Key Facts – Write a Ratio as a Fraction	Bill and Mary share £50 in the ratio 2 : 3	Write Bill's share as a fraction: 5	Bill's fraction

Knowledge Recall

-	5
3	
5	h
5	
2	
2	
۳	

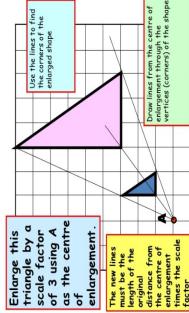
SCHOOL	Date Due	Score to beat	
Section A:Number	Section B: Algebra Geometry & measures	Section C: Using and applying	
 To increase an amount by 24%, what single multiplier would you use? 	11. Expand & simplify: 2(2x + 3) + 2(x – 2)	21.Volume is 144cm ³ , Find x?	
2. Divide 72 in the ratio of 7 : 2	12. Solve: x + 8 ≥ 5	xcm	
3. Work out: $1\frac{2}{3} \div \frac{3}{4}$	 Make a the subject of the formula: T= a - 2 	22.5.7 is rounded to one decimals place.Write down the maximum possible it	
 Estimate the answer to: 7.9 x 0.67 	14. Write down the nth term of this sequence: -1 3 7 11 15	could have been.	
5. Work out the LCM of 6 and 9	15. If $y = x^2 + 2x$, find the value of y when $x = -1$	23. The mass of a bar of chocolate is 1800g. The density of the chocolate is 9g/cm ³	
6. Write 0. 36 as a fraction	16. Factorise: y ² - 169	What is its volume?	
 Work out the balance for £720 invested for 4 years at 5% per annum 	17. Multiply & simplify: (3x - 1)(3x + 1)	24.What inequality is represented here?	
 The cost of a fridge has increased by 15% to £828. Work out the original price. 	18. Make s the subject of the formula: $v^2 = u^2 + 2as$	2 1 0 1 2 0 1 2 0 1 0 2 4 4 4	
9. Write 41500 in standard form:	$\frac{Give your answer correct to 3sf}{19. A = \pi r^2 - \pi rs_F Find A when, r = 6.5 s = 2.5$	د of getting 3 or 4	100 et
10. Work out (7x10 ³) x (8 x 10 ²) Give your answer in standard form	B.14 20. If tan $63^{\circ} = \frac{x}{4}$, find x (3sf)		
Total (A)	Total (B)	Total (C)	
Test Total (A+B+C)	R (0-9)	Y (10-19) G (20-25)	5)


TRANSFORMATIONS KNOWLEDGE ORGANISER


ROTATION

Centre of Rotation

Centre of


REFLECTION

Name	Shape	Order of Rotational Symmetry
Parallelogram		N
Regular Polygon E with n sides	Examples:	c
Rhombus	\diamond	N
Circle	0	Unlimited
Trapezium		None
Kite	\diamond	None

ae	Shape	Symmetry	(2)
ogram		N	
olygon sides	Examples:	c	
snqi	\diamond	2	
e	0	Unlimited	
sium		None	
U	\diamond	None	

TRANSLATION

Each point moved 2 to the right and 2 up.

¥

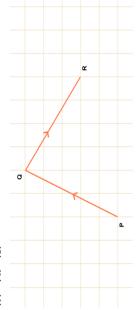
translation along x-axis

ò

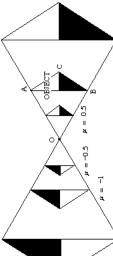
4

cranslation along y-axis

If two vectors have the same magnitude and direction, then they are equal Equal vectors



Adding vectors


Look at the graph below to see the movements between PQ, QR and PR. $\begin{pmatrix} a \\ b \\ d \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ d \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix}$

Vector \vec{PQ} followed by vector \vec{QR} represents a movement from P to R , \vec{PQ} + \vec{QR} = \vec{PR} Written out the vector addition looks like this

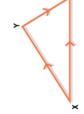
 $\binom{2}{5} + \binom{4}{-3} = \binom{6}{2}$

ENLARGEMENT

ΓŢ.

Subtracting vectors

Subtracting a vector is the same as adding a negative version of the vector (remember that making a vector negative means reversing its direction).

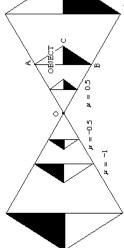

Look at the diagram and imagine going from X to Z. How would you write the path in vectors using only the vectors $\overrightarrow{X7}$ and $\overrightarrow{27}$?

You could say it is vector $\overrightarrow{x\gamma}$ followed by a backwards movement along \overrightarrow{ZY}

So we can write the path from X to Z as ×¥-z₹ = xz

Written out in numbers it looks like this: $\binom{4}{2} - \binom{1}{2} = \binom{3}{0}$

Resultant vectors

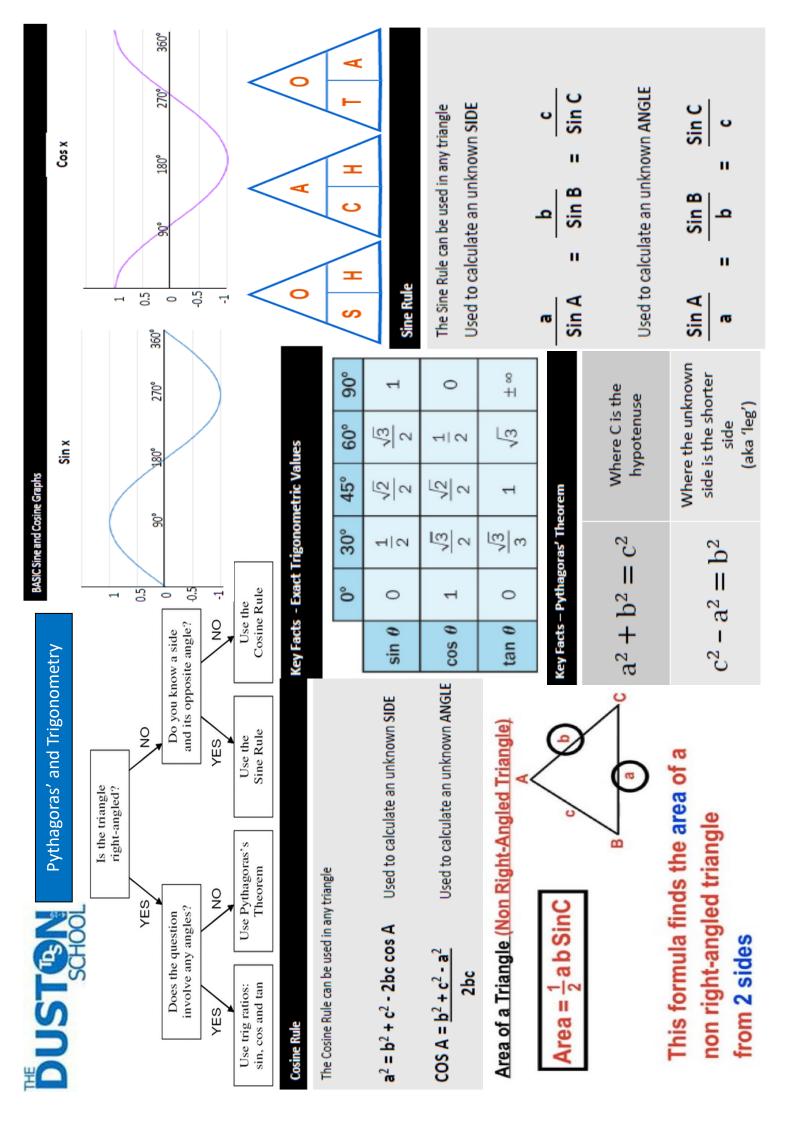

 \overrightarrow{XZ} is therefore known as the resultant of \overrightarrow{XY} and \overrightarrow{YZ} . To travel from **X** to **Z**, it is possible to move along vector $\vec{X} \gamma$ followed by \vec{YZ} . It is also possible to go directly along \vec{XZ} .

Fractional scale factors

If we 'enlarge' a shape by a scale factor that is between -1 and 1, the image will be smaller than the object

Negative scale factors

An enlargement using a negative scale factor is similar to an enlargement using a positive scale factor, but this time the image is on the other side of the centre of enlargement, and it is upside down.



٩ 11 23

DUSTON

Knowledge Recall

SCHOOL	Date Due	Sc	Score to beat
Section A:Number	Section	Section B: Algebra	Section C: Using and applying
 To increase an amount by 3.2%, what single multiplier would you use? 	11. Expa	Expand & simplify: x(x + 2) + x(x + 3)	21.
2. Decrease £750 by 18%	12. Fact	Factorise: 6m - 14	Find 'd' to 1DP:
3. Divide 360 in the ratio of 5 : 7	13. Simi	Simplify: 2g ³ x 3g ²	22. 40 is rounded to the nearest whole.
 Galina and Hiran shared 36 sweets. Galina had 12 more sweets than 	14. Solv	14. Solve: 4x ≤ 10	Write down the maximum possible length it could have been.
Hiran. What was the ratio of sweets shared in its simplest form.			
5. Work out: $1\frac{4}{5} - \frac{3}{4}$	15. Mak formula:	15. Make d the subject of the formula: A= cd	23. A block of copper weighs 2160g and has a volume of 240cm ³ . What is the density of the copper?
6. Work out: $2\frac{2}{5} \div \frac{3}{4}$	16. Wor When x	16. Work out the value of: xy +5 When x = 2 and y = 3	
 Round off 0.482 to one significant figure 	17. Write d sequence:	17. Write down the nth term of this sequence: 1 7 13 19 25	24. In an experiment the colours of 50 cars passing was recorded. 17 silver cars
8. Estimate the answer to: 253 ÷ 0.46	18. Writ sequenc	<u> </u>	were recorded. What is the relative frequency of a silver car passing?
9. Write down all the factors of 24	19. If $y = x^2 - x$, find the value of	19. If $y = x^2 - x$, find the value of y when $x = -3$	25. <u>Use π on the calculator</u> Work out the volume of this cylinder? (Correct to 1decimal place)
10. Write down the HCF of 24 and 32	20. Writ parallel 1	20. Write down the equation of a line parallel to the graph y=2x – 4	gg
Total (A)		Total (B)	Total (C)
Test Total (A+B+C)		R (0-9) Y (1	Y (10-19) G (20-25)

Knowledge Recall

Term 4 HW: 3

P O
eġ
-0,
N
5
H C

SCHOOL	Date Due	Score to beat	
Section A:Number	Section B: Algebra Geometry & measures	es Section C: Using and applying	
 To decrease an amount by 4%, what single multiplier would you use? 	11. Expand & simplify: 5(x - 3) - 2(2x + 1)	 <u>Use π on the calculator</u> Work out the volume of this cylinder's (<i>Correct to 1 significant figure</i>) 	
2. Share £1000 in the ratio of 3 : 2	12. Give the inequality	Bcm	
3. Work out: $\frac{5}{8} \div \frac{2}{3}$	 Work out the value of: 5x - 2y When x = -2 and y = -3 	22. Sam ran at 6km/h for 2h 20min. What distance did he run?	
 Round off 0.521 to one significant figure 	14. Write down the nth term of this sequence: 5 11 21 35		
5. Write down the LCM of 20 and 15	15. If $y = x^2 + 2x$, find the value of y when $x = -2$	 53. 500 tickets are sold for a prize draw The probability that Bill wins first prize 	
6. Write 0. 5 as a fraction	16. Factorise: p ² - 1	is $\frac{1}{20}$. How many tickets did he buy?	
7. The value of a bike depreciates by 55% per year. Work out the current value of a bike bought 2 years ago for £1300.	17. Multiply & simplify: (2a - 3)(2a + 1)	24. What inequality is represented here?	
 The cost of a phone has increased by 10% to £352. Work out the original price. 	18. Make w the subject of the formula: P= <u>7w-10</u> 60	1 0 1 2 3 4	
9. Write 5 x 10 ^{.3} as an ordinary number	$\frac{Give your answer correct to 3sf}{19. A = \pi r^2 - \pi rs_Find A when r = 2.7 s = 1.6$	 25. On a spinner: P(3) = % and the p(4) = % What is the probability of getting 3 or 4 	F et
10. Work out (8x10 ⁶) x (9 x 10 ⁻²) Give your answer in standard form	20. If $\cos 35^{\circ} = \frac{8}{x}$, find x (3sf)		
Total (A)	Total (B)	Total (C)	
Test Total (A+B+C)	R (0-9)	Y (10-19) G (20-25)	5)