THE DUST ${ }^{19}$ Stiod Knowledge Organiser Maths Year 11 Term 3 High

Name:	Class:
Homework	Due date

Year 11 High Term 2 Overview

Number

Laws of indices (fractional and negative, overlap to algebra)	HCF and LCM, Product of primes	Estimates
Standard form	Surds	Bounds

Algebra

Solving linear Deriving equations from words	Solve linear simultaneous equations	Factorise and solve quadratics	Algebra shape problems	nth term	Sketching straight line graphs	Sketching quadratic and cubic graphs
Rearrange formulae	Solve nonlinear simultaneous equations	quadratics $\mathrm{a}>1$	Factorise solve algebraic	Quadratic nth Geometric	$\mathrm{y}=\mathrm{mx}+\mathrm{c}$	Parallel and perpendicular equations

Shape and data

Area problems		Compound measures	Stem and leaf \& Scatter graphs	Cumulative frequency and box plots	 Sampling	 relative frequency	Sample space diagrams
Volume of problem solving	Vectors	Velocity-time graphs	Averages from Frequency polygons	Histograms	Time Series	Probability trees	Set theory (with Venn diagrams)

Ratio and proportion

Simplify/scale up/divide ratio	Recipes and best value	Exchange rates	Calculating with fractions	Percentages of amounts, increasing and
Tricky ratio problems	Tricky ratio problems	Direct \& inverse proportion	Exponential \& other non-linear graphs	 Reverse percentages

Useful Websites—Resources, Past Papers, Video Tutorials and Solutions

- https://corbettmaths.com/contents/
- https://vle.mathswatch.co.uk/vle/

USERNAME: namesurname@dustonschool
PASSWORD: berrywood

- https://www.methodmaths.com/

CENTRE ID: duston
USERNAME: firstnamesurname PASSWORD: berrywood

Solve each quadratic inequality.

1) $-x^{2}-5 x+6>0$
2) $-x^{2}-12 x-11 \leq 0$
3) $x^{2}-1<0$
4) $x^{2}-2 x-3 \geq 0$
5) $x^{2}+4 x-5>0$
6) $x^{2}-5 x-6<0$
7) $-x^{2}+3 x+10 \leq 0$
8) $x^{2}+8 x-9 \geq 0$

On each grid, $y=f(x)$ is drawn.
Sketch the graph of the transformation indicated.

$y=-f(x)$
$y=f(x+3)$

$y=f(-x)$

$y=f(x-3)-4$
$y=f(x-3)+4$
$y=-f(x-5)$

	Completing the Square	
Express the following expressions in the form $(x+a)^{2}+b$, where a and b are constants. a) $x^{2}+4 x+9$ b) $x^{2}+8 x-12$	The point $(-2,-3)$ is the turning point of $y=x^{2}+a x+b$, where a and b are integers. Find the values of a and b.	$3 x^{2}+12 x+7$ can be written in the form $a(x+b)^{2}+c$ where a, b and c are constants. a) Find the values of a, b and c.
		b) Using your answer to part (a) solve$3 x^{2}+12 x+7=7$
a) Write down the coordinates of the turning point of the graph $y=x^{2}-6 x+4$	$x^{2}+10 x-8=(x+p)^{2}-q$ where p and q are constants. a) Find the values of p and q. b) Hence Solve $x^{2}+10 x-8=0$	
b) Is this a maximum or a minimum? Maximum \square Minimum \square Bronze	Silver	

Equations of a Tangent to a Circle

1. Find the equation of the tangents to each of the circles shown below
a)

$$
\begin{gathered}
x^{2}+y^{2}=18 \\
\text { at }(-3,3)
\end{gathered}
$$

b)

$$
\begin{gathered}
x^{2}+y^{2}=13 \\
\text { at }(2,3)
\end{gathered}
$$

Centre $(2,1)$ at the point $(4,3)$
f)

Centre $(4,0)$ at the point $(8,1)$

Find the equation of the tangent passing through the following points on the circles below:
a) $x^{2}+y^{2}=17 \quad$ at the point $(4,-1)$
b) $x^{2}+y^{2}=164$
at the point $(8,10)$
c) $x^{2}+y^{2}=80$ at the point $(-4,-8)$

Advanced simultaneous equations

Question 2: Solve the following simultaneous equations

圈

(a) $x+y=4$ $y=x^{2}+3 x-1$
(b) $x+y=7$
$x y=10$
(c) $x^{2}+y^{2}=13$
$x+y=5$
(d) $2 \mathrm{x}^{2}+\mathrm{y}^{2}=10$
(e) $\mathrm{y}=\mathrm{x}^{2}+\mathrm{x}-7$
$2 x-y=5$
$4 x+2 y+1=0$
(f) $\quad \begin{aligned} & y=x-2 \\ & 2 x^{2}-x y=11\end{aligned}$

	Algebraic Fractions	
Simplify Fully $\frac{2 x+6}{x^{2}+5 x+6}$	Simplify fully $\frac{x+2}{3}+\frac{x-3}{4}$	Show that $\frac{4 x+12}{x^{2}-x-12} \div \frac{x+4}{x^{3}-16 x}$ Simplifies to $a x$ where a is an integer.
Simplify Fully $\frac{x^{2}-4}{x^{2}+4 x-12}$	Write $\frac{2}{x+5}+\frac{3}{x-2}$ as a single fraction in its simplest form.	
Bronze	Silver	Gold

