

Year 8 Science Knowledge Booklet

Term 3

Name:

Class:

Homework 1 Due: 14/01/2025

Homework 2 Due: 28/01/2025

Homework 3 Due: 11/02/2025

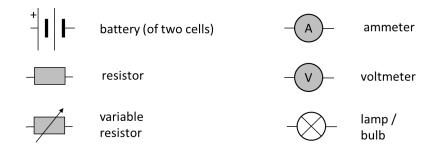
Science Homework 1

Read all of this knowledge organiser. The work covered will be in the first knowledge quiz of the term.

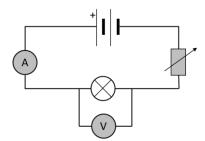
Big questions: What is electricity?

Why do circuits need to be loops?
What is electric current?
What does potential difference tell us in a circuit?
How does the resistance of components affect current?
How are current and potential difference connected?
What is Ohm's law?
What is a series circuit?
What are the patterns in circuits with two loops?
How do you calculate power in a circuit?

Key vocabulary


Electric current	The flow of electric charge around a circuit. Electric current carries energy
	transferred from the cells. Measured in amps, A.
Series circuit	A single loop of a circuit with the components following one after
	another. The current is the same all around the loop.
Voltmeter	A meter to measure potential difference. Voltmeters are connected in
	parallel with the component they are measuring in their own loop.
Light dependent resistor	A device whose resistance goes down when the amount of light goes up.
	They are useful in light sensing circuits such as automatic street lights.
Potential difference	The energy per coulomb transferred between two points in a circuit.
	Measured in volts, V
Parallel circuit	A circuit with more than one loop. The current from the cells divides at
	the junction.
Variable resistor	A resistor whose value can be changed (varied). They can control the
	current in a circuit to make it bigger or smaller.
Alternating current	Electric current that rapidly changes direction. Mains electricity is 50Hz ac
	– it changes direction 50 times a second.
Resistance	How much a component in a circuit slows down the current. It is found by
	dividing the potential difference by the current. Measured in ohms, Ω
Ammeter	A meter to measure electric current. Ammeters are connected in series in
	the loop they are measuring.
Thermistor	A device whose resistance goes down when the temperature goes up.
	They are useful in temperature sensing circuits like thermostats.
National grid	The network of overhead cables and transformers that connects power
	stations and our homes to provide us with electricity.

Why do circuits need to be loops?


Electric circuits transfer energy.

- Energy is transferred from a power supply or battery to a device like a bulb, a heater or motor.
- Energy is transferred by the electric current.
- The current must flow from the power supply to the device and then back to the power supply. This is called an electrical circuit. The circuit must be a complete loop.
- If it not a complete circuit, current will not flow.

Symbols are used to represent the components in an electrical circuit.

Circuits are drawn neatly with a ruler and pencil.

What is electric current?

Electric current is rate of flow of charge. In metal wires, the charges that flow are electrons. Electrons are negatively charged.

An ammeter connected in series is used to measure the electric current. The unit of current is amps (A).

What does potential difference tell us in a circuit?

Potential difference is a measure of the amount of energy supplied into or out of the circuit between two points.

A voltmeter connected in parallel across a component is used to measure the potential difference. The unit of potential difference is volts (V).

How does the resistance of components affect current?

Resistance is the opposition to the current. As resistance increases, current decreases. The unit of resistance is ohms (Ω) .

How are current and potential difference connected?

Science Homework 2

Try to answer all of these key knowledge questions. Then check your answers using the last page. These are some of the questions that will be in the knowledge quizzes and the end of term tests.

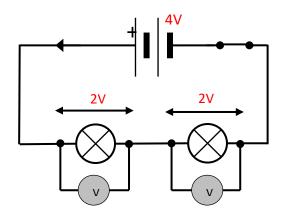
Questions in italics are from older work.

Key knowledge question	Answer
How is resistance defined?	
If resistance in a circuit increases	
what happens to the current?	
What is the equation that links	
potential difference, current and	
resistance?	
What is current?	
What is the unit of current?	
What is the unit of potential	
difference?	
What is the unit of resistance?	
What meter is used to measure	
potential difference?	
What meter is used to measure	
current?	
What is the equation that links	
power, current and potential	
difference?	

PILLAR 6.3 FLECTRIC CIRCUITS AND PILLAR 1.3 DIGESTION

As potential difference increases, current increases.

What is Ohm's law?


Ohm's Law: current is directly proportional to potential difference for a fixed resistor at constant temperature.

We can use the equation:

What is a series circuit?

A series circuit has just one loop – one path for the current to take. Current is the same at all points in a series circuit.

The potential difference supplied by a battery is shared between the components in the circuit.

What are the patterns in circuits with two loops?

A parallel circuit has two or more loops – two or more paths for the current to take.

When two paths meet, the currents add together.

The potential difference across each branch is the same.

How do you calculate power in a circuit?

Power is a measure of how much energy is transferred each second.

Key knowledge question	Answer
How is resistance defined?	The opposition to the flow of current
If resistance in a circuit increases	It decreases
what happens to the current?	
What is the equation that links	V = IR
potential difference, current and	
resistance?	potential difference = current x resistance
What is current?	The rate of flow of charge
What is the unit of current?	Amps (A)
What is the unit of potential	Volts (v)
difference?	voits (v)
What is the unit of resistance?	Ohms (Ω)
What meter is used to measure	A voltmeter
potential difference?	A Volumeter
What meter is used to measure	An ammeter
current?	
What is the equation that links	P = IV
power, current and potential	Dower - current v notential difference
difference?	Power = current x potential difference

1.3 Digestion

Big questions:

Why do we need a healthy diet?

What is an unbalanced diet?

How can we test which nutrients are I your food?

What is the structure and purpose of the digestive system?

What are enzymes?

How fast do enzymes work?

Key vocabulary

Deficiency	too little of a particular nutrient
Balanced diet	contains the correct amounts of all the necessary nutrients needed for
	healthy growth and activity
Imbalanced/poor diet	contains too much or too little of a particular nutrient
Carbohydrate	source of energy, glucose is the main respiratory substrate
Protein	assist with growth and repair of the body
Lipids (fats)	needed for energy, make up part of cell membranes and are essential for
	normal growth
Minerals	needed in small amounts to help the body function properly and stay
	strong
Vitamins	needed in very small amounts for growth and health
Fibre	provides roughage to help to keep the food moving through the gut
Water	needed for cells and body fluids
Eating disorder	mental health disorders that lead to an unhealthy relationship with food
	and weight, severely impacting day-day-life
Obese	describes a person who's very overweight, with a lot of body fat
Diabetes	\rightarrow type 1 diabetes is a genetic condition that often shows up early in life
	→ <u>type 2</u> is mainly lifestyle-related and develops over time
CHD	Coronary Heart Disease, can lead to a heart attack
Food testing	analysis of food contents
Digestive system	Group od organs responsible for breaking down the food we eat
Anus	opening at the end of the digestive system from which faeces (poo) leaves
	the body
Oesophagus	long tube between mouth and stomach
Gall bladder	a small sac below the liver, stores and releases bile into the small intestine
Large intestine	maximise water absorption. Shorter, wider tube than the small intestine
Liver	large organ which makes bile that neutralises stomach acid

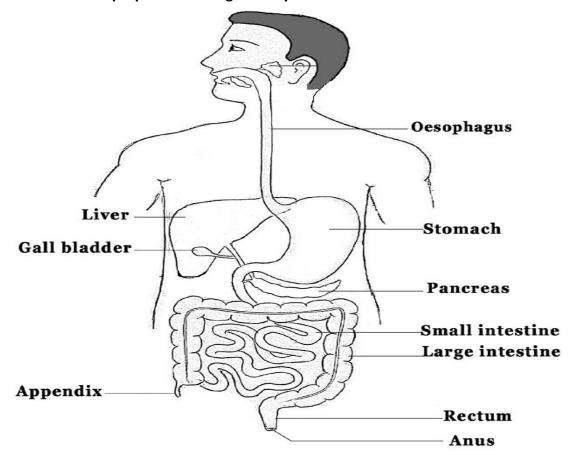
PILLAR 6.3 FLECTRIC CIRCUITS AND PILLAR 1.3 DIGESTION

Mouth	first part of the digestive system, where food enters the body
Pancreas	gland below the stomach which makes lots of chemicals called enzymes
	that help break down food
Rectum	lower part of the large intestine, where faeces (poo) is stored before it
	leaves the body
Small intestine	long, thin winding tube that food goes through after it leaves the stomach
Stomach	sack-like, muscular organ that is attached to the oesophagus. When food
	enters the stomach, it is churned with lots of acid
Smooth muscle	found throughout the digestive system
Villi	small hair like projections in the small intestine, that increase the surface
	area for more efficient diffusion
Enzyme	biological catalyst, large proteins that speed up reactions, but remain
	unchanged
Lipase	enzyme that breaks down lipids into fatty acids and glycerol
Protease	enzyme that breaks down protein into amino acids
Amylase	enzyme that breaks down starch into glucose

Why do we need a healthy diet?

Balanced diet → contains the correct amounts of all the necessary nutrients needed for healthy growth and activity

What is an unbalanced diet?


Imbalanced/poor diet → contains **too much** or **too little** of a particular nutrient

Deficiency → **too little** of a particular nutrient

How can we test which nutrients are I your food?

Test for	Colour change
Protein	Blue → Purple
Glucose	Blue → green → yellow → orange → brick red
Lipid	Red oil-stained layer floating on top
Starch	Orange → Blue black

What is the structure and purpose of the digestive system?

Essentially our digestive system is one long tube from mouth to anus → GUM to BUM

- It is made up of hollow organs
- · It fuels your heart, lungs and mind
- · It helps fight infection and illness
- It can even impacts your mood and energy levels
- It works every moment of every day and it needs to be protected, respected and cared for

Part	Function
Oesophagus	long tube between mouth and stomach

Adaptation

 Made of smooth muscle that push food and liquid through the digestive system in waves called PERISTALSIS

Part	Function
Stomach	muscular sack, when food enters, it is churned with lots of acid

Adaptation

- Strong smooth muscle walls "mash" food by contracting regularly
- Secretes acid and enzymes to help digestion

Science Homework 3

Try to answer all of these key knowledge questions. Then check your answers using the last page. These are some of the questions that will be in the knowledge quizzes and the end of term tests.

Questions in italics are from older work.

Key knowledge question	Your answer

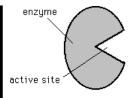
PILLAR 6.3 FLECTRIC CIRCUITS AND PILLAR 1.3 DIGESTION

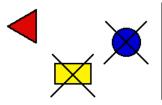
Part	Function
	Maximise water absorption. Shorter, wider
	tube than the small intestine

Adaptation

- Long and folded, increases surface area, maximising water absorption
- Made of smooth muscle to keep faeces moving
- Mucus secreted lubricates the faeces

Part	Function
	Long, thin winding tube that food goes
	through after it leaves the stomach



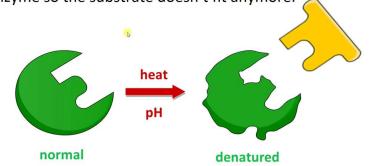

Adaptation	n
Very long,	increases surface area for
diffusion	about 7 metres!!

Villi also increase surface area for diffusion

What are enzymes?

Enzymes, like keys, only work with specific molecules

substrates


Enzymes are biological catalysts

Enzymes are large proteins

Enzymes have active sites

Enzymes speed up reaction in the body

Raising the temperature too high can **DENATURE** the enzyme so the substrate doesn't fit anymore.

Denaturing enzymes → if enzymes are exposed to **extremes of pH** or **high temperatures** the shape of their active site may change.

If this happens the substrate no longer "fits" into the enzyme's active site.

This means the key will no longer fit the lock. We say that the enzyme has been denatured.

How fast do enzymes work? Rate of enzyme activity increases with temperature up to a point. If it was too high the enzymes were denatured.

Similarly at an optimum pH an enzymes activity will be highest, but will reduce if not the optimum pH.

Key knowledge question	Answer
An enzyme is what sort of molecule?	A (large) protein
Describe the difference between Type 1 and Type 2 diabetes	Type 1- insulin not made by pancreas, Type 2- insulin no longer recognised by the body (liver/ muscles)
Describe the test for glucose	Benedict's, heat, turns from blue to: yellow, green, brick-red
Describe the test for lipid	Sudan III, mix, red layer forms on top.
Describe the test for protein	Biuret, turns form blue to purple.
Describe the test for starch	lodine turns from yellow/brown to blue-black
Describe the use of lipids by the body	Cell membranes, storage of energy
Explain why an enzyme no longer works if it is above its optimum temperature	Denatured- bonds broken, changes shape of active site, substrate no longer fits.
Identify the main nutrient found in meat	Protein
Identify where protease is made	Stomach, pancreas, small intestine
State the risk factors associated with coronary heart disease	Obesity, lack of exercise, smoking, genetic/inheritance, high blood pressure.
State what protein is broken down into	Amino acids
What are enzymes?	Biological catalysts
What does the body use carbohydrate for?	Energy
What is the name of the reagent used in the starch tests?	lodine (solution)
What is the theory we use to explain enzyme action	Lock and key (induced fit)
Why does the body need protein?	Growth and repair